

GB Page 1 of 8

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 01.11.2021 / 0008 Revision date / version: 27.07.2021 / 0007 Replacing version dated / version: 27.07.2021 / 0007 Valid from: 01.11.2021 PDF print date: 01.11.2021 COSMO PU-190.110

(COSMOPUR FaserPlus+)

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 Product identifier

COSMO PU-190.110

(COSMOPUR FaserPlus+)

1.2 Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses of the substance or mixture:

Uses advised against:

1.3 Details of the supplier of the safety data sheet Weiss Chemie + Technik GmbH & Co. KG

Hansastrasse 2 35708 Haiger Tel: +49 (0) 2773 / 815-0 msds@weiss-chemie.de www.weiss-chemie.de

Qualified person's e-mail address: info@chemical-check.de, k.schnurbusch@chemical-check.de Please DO NOT use for requesting Safety Data Sheets.

1.4 Emergency telephone number

Emergency information services / official advisory body:

Telephone number of the company in case of emergencies:

+49 (0) 700 / 24 112 112 (WIC) +1 872 5888271 (WIC)

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

Classification according to Regulation (EC) 1272/2008 (CLP)

mazaro ciass	nazaro category	Hazard Statement
Eye Irrit.	2	H319-Causes serious eye irritation.
STOT SE	3	H335-May cause respiratory irritation.
Skin Irrit.	2	H315-Causes skin irritation.
Resp. Sens.	1	H334-May cause allergy or asthma symptoms or breathing difficulties if inhaled.
Skin Sens.	1	H317-May cause an allergic skin reaction.
Carc.	2	H351-Suspected of causing cancer.
STOT RE	2	H373-May cause damage to organs through prolonged or repeated exposure by inhalation (respiratory system).

2.2 Label elements

Labeling according to Regulation (EC) 1272/2008 (CLP)

Danger

H319-Causes serious eye irritation. H335-May cause respiratory irritation. H315-Causes skin irritation. H334-May cause allergy or asthma symptoms or breathing difficulties if inhaled. H317-May cause an allergic skin reaction. H351-Suspected of causing cancer. H373-May cause damage to organs through prolonged or repeated exposure by inhalation (respiratory system).

P201-Obtain special instructions before use. P260-Do not breathe vapours or spray. P280-Wear protective gloves / protective clothing / eye protection / face protection. P284-Wear respiratory

protection.

P302+P352-IF ON SKIN: Wash with plenty of water / soap. P304+P340-IF INHALED: Remove person to fresh air and keep comfortable for breathing. P305+P351+P338-IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P308+P313-IF exposed or concerned: Get medical advice / attention.

EUH204-Contains isocyanates. May produce an allergic reaction.

As from 24 August 2023 adequate training is required before industrial or professional use 4,4'-methylenediphenyl diisocyanate
Reaction mass of 4,4'-methylenediphenyl diisocyanate and o-(p-isocyanatobenzyl)phenyl

isocyanate Methylenediphenyl diisocyanate, modified

2.3 Other hazards

The mixture does not contain any vPvB substance (vPvB = very persistent, very bioaccumulative) or is not included under XIII of the regulation (EC) 1907/2006 (< 0.1 %). The mixture does not contain any PBT substance (PBT = persistent, bioaccumulative, toxic) or is not included under XIII of the regulation (EC) 1907/2006 (< 0.1 %). The mixture does not contain any substance with endocrine disrupting properties (< 0.1 %).

SECTION 3: Composition/information on ingredients

3.1 Substances

3.1 Substances	
n.a. 3.2 Mixtures	
Reaction mass of 4,4'-methylenediphenyl diisocyanate	
and o-(p-isocyanatobenzyl)phenyl isocyanate	
Registration number (REACH)	01-2119457015-45-XXXX
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	905-806-4
CAS	5-<25
content % Classification according to Regulation (EC) 1272/2008	5-<25 Acute Tox. 4, H332
(CLP), M-factors	Skin Irrit. 2, H315
(OL) // ruotoro	Eye Irrit. 2, H319
	Skin Sens. 1, H317
	Resp. Sens. 1, H334
	Carc. 2, H351 STOT SE 3, H335
	STOT SE 3, F1333 STOT RE 2, H373 (respiratory system) (as
	inhalation)
Specific Concentration Limits and ATE	Skin Irrit. 2, H315: >=5 %
·	Eye Irrit. 2, H319: >=5 %
	Resp. Sens. 1, H334: >=0,1 %
	STOT SE 3, H335: >=5 %
Methylenediphenyl diisocyanate, modified	
Registration number (REACH)	01-2119457013-49-XXXX
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	500-040-3
CAS	25686-28-6
content %	5-<25
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Acute Tox. 4, H332 Skin Irrit. 2, H315
(OLI), IN-Idelois	Eye Irrit. 2, H319
	Skin Sens. 1, H317
	Resp. Sens. 1, H334
	Carc. 2, H351
	STOT SE 3, H335
	STOT RE 2, H373 (respiratory system) (as inhalation)
Specific Concentration Limits and ATE	Skin Irrit. 2, H315: >=5 %
	Eye Irrit. 2, H319: >=5 %
	Resp. Sens. 1, H334: >=0,1 %
	STOT SE 3, H335: >=5 %
4,4'-methylenediphenyl diisocyanate	
Registration number (REACH)	01-2119457014-47-XXXX
Index	615-005-00-9
EINECS, ELINCS, NLP, REACH-IT List-No.	202-966-0
CAS	101-68-8
content % Classification according to Regulation (EC) 1272/2008	5-<25 Acute Tox. 4, H332
(CLP), M-factors	Skin Irrit. 2, H315
/ // increio	Eye Irrit. 2, H319
	Resp. Sens. 1, H334
	Skin Sens. 1, H317
	Carc. 2, H351
	STOT SE 3, H335 STOT RE 2, H373 (respiratory system) (as
	inhalation)
Specific Concentration Limits and ATE	Skin Irrit. 2, H315: >=5 %
	Eye Irrit. 2, H319: >=5 %
	Resp. Sens. 1, H334: >=0,1 %
	STOT SE 3, H335: >=5 %
	ATE (as inhalation, Aerosol): 1,5 mg/l/4h
Poly propylene glycol	
Registration number (REACH)	
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	
CAS	25322-69-4
content %	1-10
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Acute Tox. 4, H302
(OLI), INITIACIOIS	1
4-Hydroxybutyric acid lactone	

For the text of the H-phrases and classification codes (GHS/CLP), see Section 16

The substances named in this section are given with their actual, appropriate classification!

For substances that are listed in appendix VI, table 3.1 of the regulation (EC) no. 1272/2008 (CLP regulation) this means that all notes that may be given here for the named classification have been taken into account.

01-2119471839-21-XXXX

Acute Tox. 4, H302

202-509-5 96-48-0

SECTION 4: First aid measures

4.1 Description of first aid measures

First-aiders should ensure they are protected!

Registration number (REACH)
Index
EINECS, ELINCS, NLP, REACH-IT List-No.
CAS

content %
Classification according to Regulation (EC) 1272/2008

Never pour anything into the mouth of an unconscious person!

Inhalation

Remove person from danger area.
Supply person with fresh air and consult doctor according to symptoms.
If the person is unconscious, place in a stable side position and consult a doctor.
Respiratory arrest - Artificial respiration apparatus necessary.

Skin contact

Wipe off residual product carefully with a soft, dry cloth

Remove polluted, soaked clothing immediately, wash thoroughly with plenty of water and soap, in case of irritation of the skin (flare), consult a doctor.

Dab away with polyethylene glycol 400

GB Page 2 of 8

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 01.11.2021 / 0008 Replacing version dated / version: 27.07.2021 / 0007 Valid from: 01.11.2021 PDF print date: 01.11.2021

COSMO PU-190.110

(COSMOPUR FaserPlus+)

Eye contact

Remove contact lenses.

Wash thoroughly for several minutes using copious water - call doctor immediately, have Data Sheet available.

Ingestion

Rinse the mouth thoroughly with water.

Do not induce vomiting - give copious water to drink. Consult doctor immediately

4.2 Most important symptoms and effects, both acute and delayed

A most important symptoms and effects, both acute and delayed if applicable delayed symptoms and effects can be found in section 11 and the absorption route in section 4.1. The following may occur:

Dermatitis (skin inflammation)

Drying of the skin.

Allergic contact eczema

Discoloration of the skin

Irritant to mucosa of the nose and throat

Effect on the central nervous system

Asthmatic symptoms

In case of sensitivity, concentrations below the limit value may already result in asthmatic symptoms

Respiratory distress
In certain cases, the symptoms of poisoning may only appear after an extended period / after several hours 4.3 Indication of any immediate medical attention and special treatment needed

In case of irritation of the lungs, perform first-aid with controlled-dosage aero Pulmonary oedema prophylaxis Medical supervision necessary due to possibility of delayed reaction.

SECTION 5: Firefighting measures

5.1 Extinguishing media

Suitable extinguishing media

CO2 Extinction powder Water jet spray Foam

Unsuitable extinguishing media

High volume water jet

5.2 Special hazards arising from the substance or mixture

In case of fire the following can develop:

Oxides of carbon

Oxides of nitrogen

Isocyanates
Hydrocyanic acid (hydrogen cyanide)

Toxic gases
Danger of bursting (explosion) when heated

5.3 Advice for firefighters

5.3 Advice for menigners
For personal protective equipment see Section 8.
In case of fire and/or explosion do not breathe fumes.
Protective respirator with independent air supply.
According to size of fire
Full protection, if necessary.
Cool container at risk with water.
Dispose of contaminated extinction water according to official regulations.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures 6.1.1 For non-emergency personnel

In case of spillage or accidental release, wear personal prevent contamination.

Ensure sufficient ventilation, remove sources of ignition. ase, wear personal protective equipment as specified in section 8 to

Avoid dust formation with solid or powder products

Leave the danger zone if possible, use existing emergency plans if necessary. Ensure sufficient supply of air. Avoid inhaltation, and contact with eyes or skin. If applicable, caution - risk of slipping.

6.1.2 For emergency respondersSee section 8 for suitable protective equipment and material specifications.

6.2 Environmental precautions

If leakage occurs, dam up. Resolve leaks if this possible without risk.

Prevent surface and ground-water infiltration, as well as ground penetration.

Prevent from entering drainage system.

If accidental entry into drainage system occurs, inform responsible authorities

6.3 Methods and material for containment and cleaning up

Soak up with absorbent material (e.g. universal binding agent, sand, diatomaceous eadispose of according to Section 13.

Allow to stand for a few days in an unclosed container until reaction no longer occurs. ous earth, sawdust) and

Keep moist.

Do not close packing drum. CO2 formation in closed tanks causes pressure to rise.

6.4 Reference to other sections

For personal protective equipment see Section 8 and for disposal instructions see Section 13.

SECTION 7: Handling and storage

addition to information given in this section, relevant information can also be found in section 8 and 6.1.

7.1 Precautions for safe handling

7.1.1 General recommendations

Ensure good ventilation.

Avoid inhalation of the vapours.

If applicable, suction measures at the workstation or on the processing machine necessary. Avoid contact with eyes or skin.

No contact with products of this type in case of allergies, asthma und chronic respiratory tract disorders. Eating, drinking, smoking, as well as food-storage, is prohibited in work-room. Observe directions on label and instructions for use. Use working methods according to operating instructions.

7.1.2 Notes on general hygiene measures at the workplace General hygiene measures for the handling of chemicals are applicable. Wash hands before breaks and at end of work.

Keep away from food, drink and animal feedingstuffs.

Remove contaminated clothing and protective equipment before entering areas in which food is consumed.

7.2 Conditions for safe storage, including any incompatibilities

Keep out of access to unauthorised individuals

Not to be stored in gangways or stair wells. Store product closed and only in original packing. Keep protected from direct sunlight and temperature only store at temperatures from 15°C to 25°C. ures over 50°C

Store in a dry place

7.3 Specific end use(s)

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

(GB)	Chemical Name	Reaction r	mass of 4,4'-meth	ylenediph	enyl diisocyanate a	nd o-(p-	Content		
9		isocyanato	socyanatobenzyl)phenyl isocyanate						
WE	WEL-TWA: 0,02 mg/m3 (Isocyanates, WEL-STEL: 0,07 mg/m3 (Isocyanates,								
all (all (as -NCO)) all (as -NCO))								
	nitoring procedures:								
BM	GV: 1 µmol isocyanate-d	erived diamin	e/mol creatinine	in urine	Other information	n: Sen			
(At	(At the end of the period of exposure) (Isocyanates, all (as -NCO)								
		•			•				
(GR)	Chemical Name	Methylene	diphenyl diisocya	nate, mod	dified		Content		

GB Chemical Name Methylene	ediphenyl diisocyanate, mod	dified	Content %:5-<25						
WEL-TWA: 0,02 mg/m3 (Isocyanates,	WEL-STEL: 0,07 mg/r	m3 (Isocyanates,							
all (as -NCO))	all (as -NCO))								
Monitoring procedures:	ISO 16702 (Workplace air	quality - determina	ition of total						
	isocyanate groups in air us	sing 2-(1-methoxypl	nenylpiperazine and						
-	liquid chromatography) - 2								
	MDHS 25/4 (Organic isocyanates in air – Laboratory me sampling either onto 2-(1-methoxyphenylpiperazine coa								
	fibre filters followed by sol-								
-	analysis using high perforr	mance liquid chrom	atography) - 2015						
BMGV: 1 µmol isocyanate-derived diamin	ne/mol creatinine in urine	Other information	n:						
(At the end of the period of exposure)									

GB Chemical Name	4,4'-meth	ylenediphenyl diisocyanate			Content %:5-<25		
WEL-TWA: 0,02 mg/m3 (Iso all (as -NCO))	cyanates,	WEL-STEL: 0,07 mg/r all (as -NCO))	m3 (Isocyanates,				
Monitoring procedures:		ISO 16702 (Workplace air isocyanate groups in air us liquid chromatography) - 2	sing 2-(1-methoxypl				
		MDHS 25/4 (Organic isocy sampling either onto 2-(1- fibre filters followed by sol	yanates in air – Lab methoxyphenylpipe	razine coat	ed glass		
	_	analysis using high perform	mance liquid chrom	atography)	- 2015 -		
	-	NIOSH 5521 (ISOCYANA NIOSH 5522 (ISOCYANA	TES, MONOMERIC				
	-	 NIOSH 5525 (ISOCYANATES, TOTAL (MAP)) - 2003 OSHA 18 (Diisocyanates 2,4-TDI and MDI) - 1980 					
	-	OSHA 47 (Methylene Bisp			4		
BMGV: 1 µmol isocyanate-d		ne/mol creatinine in urine	Other information	n: Sen			
(At the end of the period of ex	oosure)		(Isocyanates, all	(as -NCO))		
GR) Chemical Name	Silica, an	norphous			Content		

	%:	
2,4 mg/m3 (resp. dust)		
BMGV: Other information:		
	Content %:	
WEL-TWA: 2 fibres/ml, 5 mg/m3 (l:d WEL-STEL:		
>= 3:1, < 6µm) (MMMF)		
WEL-TWA: 6 mg/m3 (total inh. dust),		
BMGV: Other information:		

Area of application	Exposure route / Environmental compartment	Effect on health	Descri ptor	Valu e	Unit	Note
	Environment - freshwater		PNEC	1	mg/l	
	Environment - marine		PNEC	0,1	mg/l	
	Environment - soil		PNEC	1	mg/kg	
	Environment - sewage treatment plant		PNEC	1	mg/l	

Area of application	Exposure route /	Effect on	Descri	Valu	Unit	Note
	Environmental compartment	health	ptor	е		
	Environment - freshwater		PNEC	1	mg/l	
	Environment - marine		PNEC	0,1	mg/l	
	Environment - sewage treatment plant		PNEC	1	mg/l	
	Environment - soil		PNEC	1	mg/kg dw	
	Environment - sporadic (intermittent) release		PNEC	10	mg/l	
Consumer	Human - oral	Short term, systemic effects	DNEL	20	mg/kg bw/day	
Consumer	Human - dermal	Short term, local effects	DNEL	17,2	mg/cm 2	
Consumer	Human - dermal	Short term, systemic effects	DNEL	25	mg/kg bw/day	
Consumer	Human - inhalation	Short term, local effects	DNEL	0,05	mg/m3	
Consumer	Human - inhalation	Short term, systemic effects	DNEL	0,05	mg/m3	
Consumer	Human - inhalation	Long term, local effects	DNEL	0,02 5	mg/m3	
Consumer	Human - inhalation	Long term, systemic effects	DNEL	0,02 5	mg/m3	

Page 3 of 8

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 01.11.2021 / 0008

Revision date / version: 27.07.2021 / 0007 Replacing version dated / version: 27.07.2021 / 0007 Valid from: 01.11.2021 PDF print date: 01.11.2021 COSMO PU-190.110

(COSMOPUR FaserPlus+)

Workers /	Human - dermal	Short term,	DNEL	28,7	mg/cm	
employees		local effects			2	
Workers /	Human - dermal	Short term,	DNEL	50	mg/kg	
employees		systemic effects			bw/day	
Workers /	Human - inhalation	Short term,	DNEL	0,1	mg/m3	
employees		local effects				
Workers /	Human - inhalation	Short term,	DNEL	0,1	mg/m3	
employees		systemic effects				
Workers /	Human - inhalation	Long term,	DNEL	0,05	mg/m3	
employees		local effects				
Workers /	Human - inhalation	Long term,	DNEL	0,05	mg/m3	
employees		systemic effects			_	
employees				.,	J .	

	Effect on	Deceri	Valu	Heit	Note
				Unit	Note
	neaith	ptor	е		
		DNEC	0.05	ma/l	
		FINEC		IIIg/I	
		DNEC		ma/l	
		TIVEC		mg/i	
		PNFC		ma/l	
		111120	0,00	mg/i	
Environment -		PNEC	0.24	ma/ka	
sediment, freshwater			-,	dw	
Environment -		PNEC	0,02	mg/kg	
sediment, marine				dw	
Environment - soil		PNEC	0,01	mg/kg	
			468	dw	
			3		
		PNEC	452	mg/l	
Human - inhalation		DNEL	28	mg/m3	
		BUE	0.40		
Human - inhalation		DNEL	340	mg/m3	
I been and the belief an		DNE	050		
Human - Innalation		DNEL	958	mg/m3	
Liuman inhalation		DNEL	120		
numan - innalation		DINEL	130	mg/m3	
Human - dermal		DNEI	10	ma/ka	
riuman - delinai	systemic effects	DINEL	19		
	sediment, freshwater Environment - sediment, marine	Exposure route / Effect on health compartment Environment Environment - freshwater Environment - marine Environment - marine Environment - sporadic (intermittent) release Environment - sediment, freshwater Environment - sediment, freshwater Environment - sediment, marine Environment - sediment, marine Environment - sediment, marine Environment - sediment, systemic effects Human - inhalation Long term, systemic effects Human - inhalation Short term, systemic effects Human - inhalation Short term, systemic effects Human - inhalation Short term, systemic effects Long term, systemic effects Long term, systemic effects Long term, systemic effects Long term, Long ter	Exposure route / Effect on health compartment PNEC freshwater Environment - freshwater Environment - freshwater Environment - sporadic (intermittent) release Environment - sediment, freshwater Environment - sediment, freshwater Environment - sediment, freshwater Environment - sediment, marine Environment - sediment, marine PNEC PNEC Environment - sediment, marine PNEC Environment - sediment, marine PNEC Environment - sediment, marine PNEC Environment - sediment, sediment, systemic effects Human - inhalation Long term, systemic effects Human - inhalation Short term, systemic effects Human - inhalation Long term, systemic effects DNEL Long term,	Exposure route / Erfect on health ptor Valu ptor	Exposure route / Erfect on health ptor PNEC 0,05 mg/l mg/ls mg/ls

WEL-TWA = Workplace Exposure Limit - Long-term exposure limit (8-hour TWA (= time weighted average) reference period) EH40. AGW = "Arbeitsplatzgrenzwert" (workplace limit value, Germany).

(8) = Inhalable fraction (Directive 2017/164/EU, Directive 2004/37/CE), (9) = Respirable fraction (Directive 2017/164/EU, Directive 2004/37/CE), (11) = Inhalable fraction (Directive 2004/37/CE), (12) = Inhalable fraction (Directive 2004/37/CE), (13) = Inhalable fraction (Directive 2004/37/CE), (14) = Inhalable fraction (Directive 2004/37/CE), (15) = Inhal reference period). (8) = Inhalable fraction (2017/164/EU, 2017/2398/EU). (9) = Respirable fraction (2017/164/EU,

(a) = Initiatation (2017/in4EU, 2017/2396/EU), (9) = Respiration in action (2017/164/EU), 2017/2398/EU). (10) = Short-term exposure limit value in relation to a reference period of 1 minute (2017/164/EU), | BMGV = Biological monitoring guidance value EH40. BGW = "Biologischer Grenzwert" (biological limit value, Germany) | Other information: Sen = Capable of causing occupational asthma. Sk = Can be absorbed through skin. Carc = Capable of causing cancer and/or heritable genetic damage.

*** The avvocuse limit for this substance is reneated through the TRGS 900 (Germany) of January 2006 w.

= The exposure limit for this substance is repealed through the TRGS 900 (Germany) of January 2006 with the goal of revision.

(13) = The substance can cause sensitisation of the skin and of the respiratory tract (Directive 2004/37/CE), (14) = The substance can cause sensitisation of the skin (Directive 2004/37/CE).

8.2 Exposure controls

8.2.1 Appropriate engineering controls

Ensure good ventilation. This can be achieved by local suction or general air extraction. If this is insufficient to maintain the concentration under the WEL or AGW values, suitable breathing protection should be worn.

Applies only if maximum permissible exposure values are listed here.

Applies only if maximum permissible exposure values are inside riefe.

Suitable assessment methods for reviewing the effectiveness of protection measures adopted include metrological and non-metrological investigative techniques.

These are specified by e.g. EN 14042.

EN 14042 "Workplace atmospheres. Guide for the application and use of procedures for the assessment of exposure to chemical and biological agents".

8.2.2 Individual protection measures, such as personal protective equipment

General hygiene measures for the handling of chemicals are applicable.

Wash hands before breaks and at end of work.

Keep away from food, drink and animal feedingstuffs.

Remove contaminated clothing and protective equipment before entering areas in which food is consumed.

Eye/face protection: Tight fitting protective goggles with side protection (EN 166).

Skin protection - Hand protection: Chemical resistant protective gloves (EN ISO 374).

Recommended

Protective nitrile gloves (EN ISO 374).

Minimum layer thickness in mm:
>= 0,35

Permeation time (penetration time) in minutes:

>= 480
The breakthrough times determined in accordance with EN 16523-1 were not obtained under practical

The recommended maximum wearing time is 50% of breakthrough time. Protective hand cream recommended

Skin protection - Other

Protective working garments (e.g. safety shoes EN ISO 20345, long-sleeved protective working garments).

Respiratory protection:
Normally not necessary.
If OES or MEL is exceeded.
Filter A2 P2 (EN 14387), code colour brown, white
Observe wearing time limitations for respiratory protection equipment.

Thermal hazards:

Not applicable

Additional information on hand protection - No tests have been performed. In the case of mixtures, the selection has been made according to the knowledge available and the information about the contents. Selection of materials derived from glove manufacturer's indications.

Final selection of glove material must be made taking the breakthrough times, permeation rates and

rinal selection of give interial intest be made taking the breaking of intest, perinearity degradation into account. Selection of a suitable glove depends not only on the material but also on other quality characteristics and varies from manufacturer to manufacturer. In the case of mixtures, the resistance of glove materials cannot be predicted and must therefore be tested

The exact breakthrough time of the glove material can be requested from the protective glove manufacturer and must be observed

8.2.3 Environmental exposure controls

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

Physical Colour: Pastelike, Liquid Opaque Odour

Melting point/freezing point: There is no information available on this parameter.

Boiling point or initial boiling point and boiling range: Flammability: Lower explosion limit: Upper explosion limit: There is no information available on this parameter. Combustible.

There is no information available on this parameter. There is no information available on this parameter. Flash point: There is no information available on this parameter. Auto-ignition temperature:

n.a. There is no information available on this parameter. Decomposition te

Mixture reacts with water.

There is no information available on this parameter. pH: Kinematic viscosity:

Solubility: Partition coefficient n-octanol/water (log value): Insoluble Does not apply to mixtures.

Vapour pressure:
Density and/or relative density:
Relative vapour density:
Particle characteristics: There is no information available on this parameter. ~1,14 g/cm3
There is no information available on this parameter. Does not apply to liquids.

9.2 Other information Product is not explosive.

Explosives: Oxidising liquids: Evaporation rate: Bulk density: n.a. n.a.

SECTION 10: Stability and reactivity

10.1 Reactivity

10.2 Chemical stability

Stable with proper storage and handling.

10.3 Possibility of hazardous reactions Exothermic reaction possible with:

Alcohols

Amines Bases

Acids Water

Developement of:

Co2 formation in closed tanks causes pressure to rise.

Pressure increase will result in danger of bursting.

10.4 Conditions to avoid

See also section 7.
Protect from humidity.
Polymerisation due to high heat is possible.
T > ~ 260°C

10.5 Incompatible materials

Acids

Rases

Amines Alcohols Water

10.6 Hazardous decomposition products

See also section 5.2

No decomposition when used as directed.

SECTION 11: Toxicological information

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Possibly more information on health effects, see Section 2.1 (classification)
COSMO PU-190.110

(COSMOPHE FasorPhisa)

(COSMOPUR FaserPlus						
Toxicity / effect	Endpo int	Value	Unit	Organis m	Test method	Notes
Acute toxicity, by oral	ATE	>2000	mg/k			calculated
route:			g			value
Acute toxicity, by						n.d.a.
dermal route:						
Acute toxicity, by	ATE	>20	mg/l/			calculated
inhalation:			4h			value,
						Vapours
Skin						n.d.a.
corrosion/irritation:						
Serious eye						n.d.a.
damage/irritation:						
Respiratory or skin						n.d.a.
sensitisation:						
Germ cell						n.d.a.
mutagenicity:						
Carcinogenicity:						n.d.a.
Reproductive toxicity:						n.d.a.
Specific target organ						n.d.a.
toxicity - single						
exposure (STOT-SE):						
Specific target organ						n.d.a.
toxicity - repeated						
exposure (STOT-RE):						
Aspiration hazard:						n.d.a.

Controlled Controlled C	Page 4 of 8 Safety data sheet accord Revision date / version: 0 Replacing version dated	1.11.2021	/ 0008		6, Annex II			Germ cell mutagenicity:				Salmonel la typhimuri	OECD 471 (Bacterial Reverse Mutation Test)	Negative Analogo conclusi
Seminary	Valid from: 01.11.2021 PDF print date: 01.11.202 COSMO PU-190.110	21	.07.2021 / 50	J0 <i>1</i>								Rat	OECD 474 (Mammalian Erythrocyte Micronucleus	Negative ale
Receipt (Peter) Grown Vision Vi							nda					Rat	OECD 489 (In	Negative
Trackey Professor Profes							•	mutagenicity.					Alkaline Comet	ale
March Marc								Carcinogenicity:			 	Rat		Aerosol.
March Marc	·	int			m ¯	Tool moou	110103	Garoniogor			1		(Combined	Analogo
Accordance 1,000			> 10000		Rat	I					1	[Toxicity/Carcinog	conclusi Carc. 2
Control of the cont	Acute toxicity, by	LD50	> 9400	mg/k	Rabbit			Described to vigity:	NOVE	4 10	ma/m	Dat	enicity Studies)	
Does not service that we have been serviced by the service of the serviced serviced by the serviced serviced by the serviced		LC50	0,49		Rat		Mist,	Reproductive toxicity:		4-12		Kat	(Prenatal	Analogo
Pales Control Age							Does not conform with EU	toxicity - single						May cau
Angular part Angu							n.	inhalative:						
Projection					Rabbit		Irritant		LOAE	1	mg/m	Rat		Aerosol, Analogo
Column C	COTTOSION/IIIII.au.o.i.					Irritation/Corrosio		exposure (STOT-RE),	-		້	[Chronic	conclusi
Semination: Semin	Peeniratory or skin			\longmapsto	Guinea		Vas	inhalat.:			1	[Target organ(s
Secretary Secr							(inhalation						ernorry ocacios,	respirat
Commonstration						I		Specific target organ	NOAE	0.2	ma/m	Rat	OFCD 453	system Aerosol
Control Cont				 				toxicity - repeated		0,2		I/a:	(Combined	Analogo
Germ cap					la	440/2008					1	1		conclus
TEST UNING Commonly						(REVERSE	1	innaiat			1	1		organ(s
Bot State											1	[1	respirat
Martine Mart						BACTERIA)								3,0.0
Perference Per					Rat		Negative		Endpo	Value	Unit	Organis	Test method	Notes
Total Tota	mutago.ne,					Erythrocyte		_	int			m		
Rat									LD50		mg/к g	Rat	1	
Chromo Chromos Chrom	Carcinogenicity:				Rat	OECD 453	Carc. 2	Acute toxicity, by	LD50			Rabbit		Analog
Microsynthesis								dermal route:			g [[conclus
Modular Modu						Toxicity/Carcinog					+	Rabbit	OECD 404	Not irrit
Metalysteroidphenyl dilacoyenate, modified Torganis Test method Notes				ш		enicity Studies)		corrosion/irritation:			1	[
Install				11-14	2la	- · · · · · · · · · · · · · ·		2				D	n)	Oli abab
Accept country, by coal LDSD 2000 mg/k Rat CECD 401 Analogous	Toxicity / effect		Value	Unit		Test methoa	Notes				1	Rabbit		Slightly irritant
Semination Respiratory or skin Respira			>2000					Ĭ			1	[Irritation/Corrosio	
Skin correction/infallation: Rabbit OECD 404 (Anub Demal Infallation): Rabbit OECD 404 (Anub Demal Infallation): Rabbit OECD 404 (Anub Eye Infallation): Respiratory or skin service Infallation: Respiratory or skin September of Septemb	route:			g			conclusion	Respiratory or skin			+	Mouse	OECD 429 (Skin	No (ski
Services eye d'annage finitation d'annage fini					Rabbit	OECD 404	Skin Irrit. 2				1		Sensitisation -	contact
Serious eye damagerination: Rabbit CCD 475 (Acute Eye	corrosion/irritation:						1				1	1		
Acute toxicity, by and routed and production of the control of t					2 664	n)	- 1						OECD 471	Negativ
Respiratory or skin					Rabbit		Eye Irrit. 2	mutagenicity:			1	[
Respiratory or skin semislastion. Guinea Septimental process of the control of th	damago,					Irritation/Corrosio	1	2 "					Mutation Test)	11- matin
senistation: OECD 468 (Skin plg Senistation) contact) Germ colf multigenicity: Ves (skin contact) Germ colf mu	Respiratory or skin				Mouse	n)					1	[Vitro	Analog
sensitisation: Sammoel Sammoel	sensitisation:			\sqcup		0500 400 (Qkin	(inhalation)	_						conclus
Samone						Sensitisation)					!		Aberration Test)	l
Specific target organ building - repeated plants of the first of the	Germ cell				Salmonel	Regulation (EC)							OECD 476 (In	Negati
Care	mutagenicity:					B.13/B.14		mutagenicity.			1	[Mammalian Cell	conclu
TEST USING BACTERIA Section BACTERIA						(REVERSE	1						Gene Mutation	
Germ cell mutagenicity: Rat OECD 474 (Mammalian Erythrocyte Micronucleus Erythrocyte Eryth						TEST USING			NOAE	1000	mg/k	Rat	OECD 421	Analog
Mammalian Erythrocyte Micronucleus Erythrocyte Micronucleus Toxicity Specific target organ NOEC O.2 mg/m Rat OECD 453 Combined Chronic Toxicity/Carcinog enicity Studies OECD 453 Combined Chronic Toxicity/ enicty feffect OECD 453 Combined Chronic Toxicity/ enicty feffect OECD 407 Concident tends of the property discognition of t	- 9			\sqcup		BACTERIA)		(Developmental					(Reproduction/D	conclu
Eythrocyte Micronucleus Test) Microcyte Micronucleus Test) Reproductive toxicity NOAE CoEO 427 Reproductive toxicity Combined Chronic Toxicity / effect Endpo Intellect Combined Chronic Intellect					Rat		Negative	toxicity):			1	[Toxicity	
Specific target organ toxicity - repeated exposure (STOT-RE), inhalata: Ad-*methylenediphenyl dilisocyunuture tremb Ad-*methylenediphenyl dilisocyunuture tremb Acute toxicity, by cral rotucit: Acute toxicity, by Cate toxicity, by Cate toxicity, by Carle acute toxicity, by Cate toxicity, by Carle acute toxicity, by Cate toxicity, b	matagorii z,					Erythrocyte		December to violity	NOAE	1000	/k	224	Screening Test)	1 - 0 0 0
Specific target organ toxicity combined exposure (STOT-RE), inhalata: 4.4-methylenediphenyl discovante										1000		Rat	(Reproduction/D	Analog
exposure (STOT-RE), inhalat::		NOEC	0,2		Rat	OECD 453					້	[evelopmental	
inhalata: Image: Control of the image: Co	exposure (STOT-RE),			3		Chronic								l
4.4-methylenediphenyl diisocyanate Toxicity / effect						Toxicity/Carcinog		Symptoms:						annoya
Toxicity effect Endpo int LD50 S2000 mg/k Rat Regulation (EC) 440/2008 B.1 (ACUTE ORAL TOXICITY) Acute toxicity, by oral route: LD50 S9400 mg/k Rat Regulation (EC) 440/2008 B.1 (ACUTE ORAL TOXICITY) Acute toxicity, by dermal route: LD50 S9400 mg/k Rabbit OECD 402 (Acute Dermal Toxicity) Acute toxicity, by inhalation: LC50 0,368 mg/l/ 4h Rat OECD 403 Aerosol, Expert inhalation: LC50 Are sol, Expert inhalation: LC50 Respiratory or skin sensitisation: Respiratory or skin sensitisation: LC50 Guinea pig Mouse OECD 429 (Skin Sensitisation: Local Lymph Mouse OE						enicity studies;								trembli
Acute toxicity, by oral route: Comparison Comparison				Unit	Organis	Test method	Notes			>=1000		Rat		Analog conclus
route: Separatory or skin sensitisation: Separatory or skin s	•	int			m ¯			exposure (STOT-RE),			"		28-Day Oral	
Acute toxicity, by dermal route: Acute toxicity, by dermal route:		LD50	>2000		Rat	Regulation (EC) 440/2008 B.1		oral:			1	[
Acute toxicity, by dermal route: LD50	Touls.			"		(ACUTE ORAL		4 Undrosubuturio acid	- ctono					
dermal route: Composition Conclusion	Acute toxicity, by	LD50	>9400	mg/k	Rabbit	TOXICITY) OECD 402	Analogous		Endpo	Value	Unit	Organis	Test method	Notes
Acute toxicity, by inhalation: Acute toxicity, by inhalation: LC50 0,368 mg/l Ath Rat OECD 403 (Acute Inhalation Toxicity) LC50 Does not conform with EU classification. Acute toxicity, by inhalation: Acute toxicity, by inhalation: Acute toxicity, by inhalation: Acute toxicity ATE 1,5 mg/l Ath			-			(Acute Dermal		Chin	int			m		Not irri
inhalation: Ath Ath		LC50	0,368	mg/l/	Rat	OECD 403		corrosion/irritation:						
with EU classificatio n. Acute toxicity, by inhalation: Are 1,5 mg/l/ 4h Rabbit OECD 404 (Acute Dermal Irritation/Corrosio n) Note Oeconclusion (Irritation) Oeconclusion on n) Respiratory or skin sensitisation: Respiratory or skin sensitisation - Local Lymph Reproductive toxicity: Reproductive toxicity: Silica, amorphous Toxicity / effect into int Acute toxicity, by oral conclusion (Inhalation) Acute toxicity: Silica, amorphous Toxicity / effect into int Acute toxicity, by oral conclusion Note Toxicity - Acute			•			(Acute Inhalation	Does not					Mouse		
Acute toxicity, by ATE 1,5 mg/l/4h Rabbit OECD 404 (Acute Dermal Irritation/Corrosion) n) Respiratory or skin sensitisation: Reproductive toxicity: Silica, amorphous Toxicity / effect Endpo int Acute toxicity, by oral condition (Acute toxicity, by oral condition) Respiratory or skin sensitisation: Acute toxicity, by oral condition Acute toxicity. Acute toxicity: Acute toxicity:						l Oxicity)	with EU	Sensilisation.			1	[Local Lymph	
Acute toxicity, by ATE 1,5 mg/l/4h ATE 1,5 mg/l/4h AFE 1,5 mg/						I	1	Reproductive toxicity:					Node Assay)	Negativ
Skin corrosion/irritation: Rabbit OECD 404 (Acute Dermal Irritation/Corrosion n) OECD 429 (Skin sensitisation: Respiratory or skin sensitisation - Local Lymph		ATE	1,5				Aerosol,	reproductive teneny.			1	[1	Analog
Skin corrosion/irritation: Rabbit OECD 404 (Acute Dermal Irritation/Corrosio n)	inhalation:					l						<u> </u>		conclu
Courosion/irritation:				 	Rabbit		Skin Irrit.	Silica, amorphous						
Respiratory or skin sensitisation: Respiratory or skin sensitisation: Discription Discription						(Acute Dermal	2,	Toxicity / effect		Value	Unit		Test method	Notes
Respiratory or skin sensitisation: Respiratory or skin pig Mouse OECD 429 (Skin Sensitisation: Sensitisation: Sensitisation: OECD 429 (Skin Sens. Skin Sens. Sensitisation - Local Lymph Acute toxicity, by LD50 > 2000 mg/k Rat OECD 402				_				Acute toxicity, by oral		>5000	mg/k			
Respiratory or skin sensitisation: Mouse OECD 429 (Skin Skin Sens. Sensitisation - Local Lymph Acute toxicity, by LD50 > 2000 mg/k Rat OECD 402			-			- 1-7	Yes						(Acute Oral	
sensitisation: Sensitisation - Local Lymph 1 Acute toxicity, by LD50 > 2000 mg/k Rat OECD 402	sensitisation:					OECD 429 (Skin					1	[
	Respiratory or skin					Sensitisation -				2220			Method)	<u> </u>
		1												

GB) Page 5 of 8								42.4 Taviaituta	1.050	OCh			Deceloration	OECD 202	
Safety data sheet a Revision date / vers Replacing version of	sion: 01.11.20 dated / version	021 / 00	80		6, Annex II			12.1. Toxicity to fish:	LC50	96h	> 100 0	mg/l	Brachydanio rerio	OECD 203 (Fish, Acute Toxicity Test)	
Valid from: 01.11.2021 PDF print date: 01.11.2021 COSMO PU-190.110						12.1. Toxicity to daphnia:	NOEC/N OEL	21d	>10	mg/l	Daphnia magna	OECD 211 (Daphnia magna Reproductio			
(COSMOPUR Fase	erPlus+)							12.1. Toxicity to	EC50	24h	>	mg/l	Daphnia	n Test) OECD 202	
Skin corrosion/irritation:					Rabbit	OECD 404 (Acute Dermal Irritation/Corrosio n)	Not irritant	daphnia:	2000	2411	100	mg/i	magna	(Daphnia sp. Acute Immobilisati on Test)	
Serious eye damage/irritation:					Rabbit	OECD 405 (Acute Eye Irritation/Corrosio	Not irritant	Toxicity to bacteria:	EC50	3h	>10 0	mg/l	activated sludge	OECD 209 (Activated Sludge, Respiration	
Germ cell mutagenicity:						OECD 471 (Bacterial Reverse Mutation Test)	Negative							Inhibition Test (Carbon and	
Aspiration hazard:						matation 100ty	No							Ammonium Oxidation))	
Glass, oxide, chen Toxicity / effect	nicals End	po V	alue	Unit	Organis	Test method	Notes	Methylenediphen	vl diisocvana	e. modif	ied			, , , , , ,	
Symptoms:	int				m		mucous	Toxicity / effect	Endpoin	Tim	Valu e	Unit	Organism	Test method	Notes
							membrane irritation	12.2. Persistence and degradability:		28d	0	%	activated sludge	OECD 302 C (Inherent Biodegradab	
COSMO PU-190.11	10	ner haz	zards											ility - Modified MITI Test (II))	
(COSMOPUR Fase Toxicity / effect	erPlus+) End int	po V	alue	Unit	Organis m	Test method	Notes	12.3. Bioaccumulative	BCF		200			OECD 305 (Bioconcentr	Not to be expected
Endocrine disruptin properties:							Does not apply to mixtures.	potential:					_	ation - Flow- Through Fish Test)	·
Other information:							No other relevant information	12.1. Toxicity to fish:	LC50	96h	>10 00	mg/l	Brachydanio rerio	OECD 203 (Fish, Acute Toxicity Test)	
							available on adverse effects on health.	12.1. Toxicity to daphnia:	NOEC/N OEL	21d	>=1 0	mg/l	Daphnia magna	OECD 211 (Daphnia magna Reproductio	
	SEC	TION	12: E	cologi	cal infor	mation		Toxicity to bacteria:	EC50	3h	>10 0	mg/l	activated sludge	n Test) OECD 209 (Activated	
Possibly more information COSMO PU-190.11	10	vironme	ntal effect		tion 2.1 (class	sification).								Sludge, Respiration Inhibition Test (Carbon and	
Toxicity / effect 12.1. Toxicity to	Endpoin t	Tim e	Valu e	Unit	Organisn	n Test method	Notes n.d.a.							Ammonium Oxidation))	
fish: 12.1. Toxicity to daphnia:							n.d.a.	4,4'-methylenedip Toxicity / effect	henyl diisocy Endpoin	anate Tim	Valu	Unit	Organism	Test	Notes
12.1. Toxicity to algae:							n.d.a.	Other	t	е	е		_	method	According
12.2. Persistence and degradability:							With water at the interface, transforms slowly with formation of CO2 into a firm, insoluble reaction product with a high melting point (polycarba mide). According to experience available to date, polycarbam ide is inert and non-degradable.	information: 12.4. Mobility in soil:	H (Henry)		0,02	Pa*m 3/mol			to experience available to date, polycarbarride is inert and non-degradable., With water at the interface, transforms slowly with formation of CO2 into a firm, insoluble reaction product with a high melting point (polycarba mide).
12.3. Bioaccumulative							n.d.a.	12.1. Toxicity to	LC50	96h	>10	mg/l	Brachydanio	OECD 203	Analogous
			1				n.d.a.	fish:			00		rerio	(Fish, Acute Toxicity	conclusion
potential: 12.4. Mobility in								1	1					Test)	I
potential: 12.4. Mobility in soil: 12.5. Results of PBT and vPvB							n.d.a.								
potential: 12.4. Mobility in soil: 12.5. Results of PBT and vPvB assessment 12.6. Endocrine disrupting							n.d.a.								
potential: 12.4. Mobility in soil: 12.5. Results of PBT and vPvB assessment 12.6. Endocrine															
potential: 12.4. Mobility in soil: 12.5. Results of PBT and vPvB assessment 12.6. Endocrine disrupting properties: 12.7. Other adverse effects:	4.4'-methyle	nedinhe	nyl diiso	cyanate a	nd o-(p-isocy	anatobenzylinhenyl	n.d.a.								
potential: 12.4. Mobility in soil: 12.5. Results of PBT and vPvB assessment 12.6. Endocrine disrupting properties: 12.7. Other adverse effects:	4,4'-methyle Endpoin t	Tim	Valu	cyanate a	nd o-(p-isocy Organisn		n.d.a.								
potential: 12.4. Mobility in soil: 12.5. Results of PBT and vPVB assessment 12.6. Endocrine disrupting properties: 12.7. Other adverse effects:						Test method OECD 302 C (Inherent Biodegradab ility - Modified MITI Test	n.d.a. n.d.a. isocyanate								
potential: 12.4. Mobility in soil: 12.5. Results of PBT and vPvB assessment 12.6. Endocrine disrupting properties: 12.7. Other adverse effects: Reaction mass of Toxicity / effect 12.2. Persistence and		Tim e	Valu e	Unit	Organisn activated	method OECD 302 C (Inherent Biodegradab ility - Modified	n.d.a. n.d.a. isocyanate								

Organism

Test

MITI Test (I))

calculated value No PBT substance, No vPvB substance

Notes

Page 6 of 8
Safety data sheet according to Regulation (EC) No 1907/2006, Annex II
Revision date / version: 01.11.2021 / 0008
Replacing version dated / version: 27.07.2021 / 0007
Valid from: 01.11.2021
PDF print date: 01.11.2021
COSMO PU-190.110

Poly propylene glycol

(COSMOPUR Fase	erPlus+)						
12.2. Persistence and degradability:		28d	0	%		OECD 302 C (Inherent Biodegradab iility - Modified MITI Test (II))	Not biodegrada ble, With water at the interface, transforms slowly with formation of CO2 into a firm, insoluble reaction product with a high melting point (polycarba mide)., According to experience available to date, polycarbamide is inert and non-degradable., Analogous conclusion
12.1. Toxicity to daphnia:	EC50	24h	>10 00	mg/l	Daphnia magna	OECD 202 (Daphnia sp. Acute Immobilisati	Analogous conclusion
12.1. Toxicity to daphnia:	NOEC/N OEL	21d	>10	mg/l	Daphnia magna	on Test) OECD 202 (Daphnia sp. Acute Immobilisati on Test)	Analogous conclusion
12.3. Bioaccumulative potential:	Log Pow		5,22				A notable biological accumulati on potential has to be expected (LogPow > 3).
12.1. Toxicity to algae:	ErC50	72h	>16 40	mg/l	Desmodesm us subspicatus	OECD 201 (Alga, Growth Inhibition Test)	Analogous conclusion
12.3. Bioaccumulative potential:	BCF	28d	200		Cyprinus caprio	IUCLID Chem. Data Sheet (ESIS)	Not to be expected
12.5. Results of PBT and vPvB assessment							No PBT substance, No vPvB substance
Other information:	AOX						Does not contain any organically bound halogens which can contribute to the AOX value in waste water.
Toxicity to bacteria:	EC50	3h	>10 0	mg/l	activated sludge	OECD 209 (Activated Sludge, Respiration Inhibition Test (Carbon and Ammonium Oxidation))	Analogous conclusion
Other organisms:	NOEC/N OEL	14d	>10 00	mg/k g	Lactuca sativa	OECD 208 (Terrestrial Plants, Growth Test)	Analogous conclusion
Other organisms:	NOEC/N OEL	14d	>10 00	mg/k g	Avena sativa	OECD 208 (Terrestrial Plants, Growth Test)	Analogous conclusion
Toxicity to annelids:	NOEC/N OEL	14d	> 100 0	mg/k g	Lumbricus terrestris	OECD 207 (Earthworm, Acute Toxicity Tests)	Analogous conclusion
Toxicity to annelids:	EC50	14d	>10 00	mg/k g	Eisenia foetida	OECD 207 (Earthworm, Acute Toxicity Tests)	Analogous conclusion

Toxicity / effect	Endpoin t	Tim e	Valu e	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	LC50	96h	>10 0		Poecilia reticulata	OECD 203 (Fish, Acute Toxicity Test)	
12.1. Toxicity to daphnia:	EC50	48h	>10 0	mg/l	Daphnia magna	OECD 202 (Daphnia sp. Acute Immobilisati on Test)	
12.1. Toxicity to algae:	EC0	72h	>10 0	mg/l	Desmodesm us subspicatus	OECD 201 (Alga, Growth Inhibition Test)	Analogous conclusion
12.2. Persistence and degradability:		28d	87	%		OECD 301 F (Ready Biodegradab ility - Manometric Respirometr y Test)	
12.3. Bioaccumulative potential:	Log Kow		0-1				calculated value
12.4. Mobility in soil:	Log Koc		0-1				
12.4. Mobility in soil:	Koc		1-10				
Toxicity to bacteria:	EC50	3h	>10 00	mg/l	activated sludge	OECD 209 (Activated Sludge, Respiration Inhibition Test (Carbon and Ammonium Oxidation))	Analogous conclusion
4-Hydroxybutyric	acid lactone						
Toxicity / effect	Endpoin t	Tim e	Valu e	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	LC50	96h	56	mg/l	Lepomis macrochirus	OECD 203 (Fish, Acute Toxicity Test)	
12.1. Toxicity to daphnia:	EC50	48h	>50 0	mg/l	Daphnia magna	,	
12.2. Persistence and degradability:	DOC	13d	98	%			
12.2. Persistence and degradability:	BOD	14d	77	%	activated sludge	OECD 301 C (Ready Biodegradab ility - Modified MITI Test (I))	Readily biodegrada ble

Valu

Unit

Tim

Toxicity / effect

Endpoin

			8		pyriformis			
Silica, amorphous								
Toxicity / effect	Endpoin	Tim	Valu	Unit	Organism	Test	Notes	
	t	е	е			method		
12.1. Toxicity to	EC0	96h	>10	mg/l	Brachydanio	OECD 203		
fish:			000		rerio	(Fish, Acute		
						Toxicity		
10.1 Taviaituta	EC0	24h	>10	/I	Daphnia	Test) OECD 202		
12.1. Toxicity to	ECO	2411	00	mg/l				
daphnia:			00		magna	(Daphnia sp. Acute		
						Immobilisati		
						on Test)		
12.1. Toxicity to	ErC50	72h	>=1	mg/l	Scenedesm	OECD 201		
algae:	21000	/ 2"	000	1119/1	us	(Alga,		
3			0		subspicatus	Growth		
						Inhibition		
						Test)		
12.2.						,	Inorganic	
Persistence and							products	
degradability:							cannot be	
							eliminated	
							from water	
							through	
							biological	
							purification	
10 5 5 1: 1							methods.	
12.5. Results of							No PBT	
PBT and vPvB							substance,	
assessment							No vPvB substance	
							substance	

451 mg/l Tetrahymen

SECTION 13: Disposal considerations

13.1 Waste treatment methods

For the substance / mixture / residual amounts

12.4. Mobility in soil: 12.5. Results of PBT and vPvB assessment

Other organisms: EC50

For the substance / mixture / residual amounts

EC disposal code no.:

The waste codes are recommendations based on the scheduled use of this product.

Owing to the user's specific conditions for use and disposal, other waste codes may be allocated under certain circumstances. (2014/955/EU)

80 40 99 waste adhesives and sealants containing organic solvents or other hazardous substances

80 50 10 waste isocyanates

Recommendation:

Sewage disposal shall be discouraged.

Pay attention to local and national official regulations.

E.g. suitable incineration plant.

Hardened product:

E.g. dispose at suitable refuse site.

B 7 of 8

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 01.11.2021 / 0008 Replacing version dated / version: 27.07.2021 / 0007 Valid from: 01.11.2021 PDF print date: 01.11.2021

COSMO PU-190.110 (COSMOPUR FaserPlus+)

For contaminated packing material

Pay attention to local and national official regulations Empty container completely.

Uncontaminated packaging can be recycled.

Dispose of packaging that cannot be cleaned in the same manner as the substance.

15 01 10 packaging containing residues of or contaminated by hazardous substances

SECTION 14: Transport information

General statements

14.1. UN number or ID numb

Transport by road/by rail (ADR/RID)

14.2. UN proper shipping name:
14.3. Transport hazard class(es):
14.4. Packing group:
Classification code: n.a. n.a. n.a.

LQ: n.a 14.5. Environmental hazards: Tunnel restriction code: Not applicable

Transport by sea (IMDG-code)

14.2. UN proper shipping name: 14.3. Transport hazard class(es): 14.4. Packing group: Marine Pollutant:

n.a 14.5. Environmental hazards Not applicable

Transport by air (IATA)

14.2. UN proper shipping name: 14.3. Transport hazard class(es): 14.4. Packing group: 14.5. Environmental hazards: Not applicable

14.6. Special precautions for userUnless specified otherwise, general measures for safe transport must be followed.

14.7. Maritime transport in bulk according to IMO instruments

Non-dangerous material according to Transport Regulation

SECTION 15: Regulatory information

n.a.

n.a.

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

Observe restrictions:
Comply with national regulations/laws governing the protection of young people at work (national implementation of the Directive 94/33/EC)!

Implementation of the Directive 94/33/EC)!
Regulation (EC) No 1907/2006, Annex XVII
Reaction mass of 4,4'-methylenediphenyl diisocyanate and o-(p-isocyanatobenzyl)phenyl isocyanate
Methylenediphenyl diisocyanate, modified
4,4'-methylenediphenyl diisocyanate
Comply with national regulations/laws governing maternity protection (national implementation of the Directive

92/85/ÉEC)!

Comply with trade association/occupational health regulations.

Directive 2010/75/EU (VOC): Directive 2010/75/EU (VOC):

15.2 Chemical safety assessment

ent is not provided for mixtures.

SECTION 16: Other information

Revised sections:

These details refer to the product as it is delivered.

Employee instruction/training in handling hazardous materials is required.

Classification and processes used to derive the classification of the mixture in accordance with the ordinance (EG) 1272/2008 (CLP):

Classification in accordance with regulation (EC) No. 1272/2008 (CLP)	Evaluation method used
Eye Irrit. 2, H319	Classification according to calculation procedure.
STOT SE 3, H335	Classification according to calculation procedure.
Skin Irrit. 2, H315	Classification according to calculation procedure.
Resp. Sens. 1, H334	Classification according to calculation procedure.
Skin Sens. 1, H317	Classification according to calculation procedure.
Carc. 2, H351	Classification according to calculation procedure.
STOT RE 2, H373	Classification according to calculation procedure.

The following phrases represent the posted Hazard Class and Risk Category Code (GHS/CLP) of the product and the constituents (specified in Section 2 and 3).

H373 May cause damage to organs through prolonged or repeated exposure by inhalation.

H302 Harmful if swallowed.

H315 Causes skin irritation.

H317 May cause an allergic skin reaction.

H318 Causes serious eye damage. H319 Causes serious eye irritation.

H332 Harmful if inhaled.

H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled. H335 May cause respiratory irritation. H336 May cause drowsiness or dizziness.

H351 Suspected of causing cancer

Eye Irrit. — Eye irritation STOT SE — Specific target organ toxicity - single exposure - respiratory tract irritation

Skin Irrit. — Skin irritation
Resp. Sens. — Respiratory sensitization
Skin Sens. — Skin sensitization
Carc. — Carcinogenicity

Carc. — Carcinogenicity
STOT RE — Specific target organ toxicity - repeated exposure
Acute Tox. — Acute toxicity - inhalation
Acute Tox. — Acute toxicity - oral
Eye Dam. — Serious eye damage
STOT SE — Specific target organ toxicity - single exposure - narcotic effects

Key literature references and sources

for data:

Regulation (EC) No 1907/2006 (REACH) and Regulation (EC) No 1272/2008 (CLP) as amended.

Guidelines for the preparation of safety data sheets as amended (ECHA).

Guidelines on labelling and packaging according to the Regulation (EG) Nr. 1272/2008 (CLP) as amended (ECHA).
Safety data sheets for the constituent substances.
ECHA Homepage - Information about chemicals.

GESTIS Substance Database (Germany).

German Environment Agency "Rigoletto" information site on substances that are hazardous to water

German Environment Agency Togorical Management (Germany).

EU Occupation Exposure Limits Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU, (EU) 2017/164, (EU) 2019/1831, each as amended.

National Lists of Occupational Exposure Limits for each country as amended.

Regulations on the transport of hazardous goods by road, rail, sea and air (ADR, RID, IMDG, IATA) as

Any abbreviations and acronyms used in this document:

acc., acc. to according, according to ADR Accord européen relatif

ADR Accord européen relatif au transport international des marchandises Dangereuses par Route (= European Agreement concerning the International Carriage of Dangerous Goods by Road)

AOX

Adsorbable organic halogen compounds

Adsorbable organic halogen composition approximately approximately Art., Art. no.Article number ASTM ASTM International (American Society for Testing and Materials)

ATE BAM Acute Toxicity Estimate

Bundesanstalt für Materialforschung und -prüfung (Federal Institute for Materials Research and Testing, Ge mramy)
Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (= Federal Institute for Occupational Health

RAHA

Germany) Bioconcentration factor BCF BSEF

The International Bromine Council

been the international strontine council
by body weight
CAS Chemical Abstracts Service
CLP Classification, Labelling and Packaging (REGULATION (EC) No 1272/2008 on classification, labelling and packaging of substances and mixtures)
CMR carcinogenic, mutagenic, reproductive toxic
DMEL Derived Minimum Effect Level

DNEL Derived No Effect Level DOC Dissolved organic carbon

dw dry weight
e.g. for example (abbreviation of Latin 'exempli gratia'), for instance
EbCx, EyCx, EbLx (x = 10, 50) Effect Concentration/Level of x % on reduction of the biomass (algae, plants)

European Community ECHA

European Community
European Chemicals Agency
(= 0, 3, 5, 10, 20, 50, 80, 100) Effect Concentration/Level for x % effect
European Economic Community
European Inventory of Existing Commercial Chemical Substances
European List of Notified Chemical Substances ECX, ELX (X EEC EINECS

ELINCS EN European Norms

United States Environmental Protection Agency (United States of America)
ErLx (x = 10, 50) Effect Concentration/Level of x % on inhibition of the growth rate

EN United States Env ErCx, EµCx, ErLx (x = 10, 50) (algae, plants) etc. et cetera European Union Ethylene-vinyl alcohol copolymer Fax number

EVAL Fax. gen. GHS

general Globally Harmonized System of Classification and Labelling of Chemicals **GWP** Global warming potential Adsorption coefficient of organic carbon in the soil

Koc

Koc Adsorption coefficient of organic carbon in the Kow catanol-water partition coefficient IARC International Agency for Research on Cancel IATA International Air Transport Association IBC (Code) International Bulk Chemical (Code) IMDG-code International Maritime Code for Dangerous G International Maritime Code for Dangerous Goods

incl. including, inclusive International Uniform Chemical Information Database

IUCLID IUPAC LC50 LD50 International Union for Pure Applied Chemistry
Lethal Concentration to 50 % of a test population
Lethal Dose to 50% of a test population
Lethal Dose to 50% of a test population (Median Lethal Dose)
Logarithm of adsorption coefficient of organic carbon in the soil Log Koc

Log Kow, Log Pow Logarithm of octanol-water partition coefficient LQ Limited Quantities MARPOL International Convention for the Prevention of Marine Pollution from Ships not applicable

n.a. n.av. not available not checked

not checken
no data available
National Institute for Occupational Safety and Health (USA)
No-longer-Polymer
L
No Observed Effect Concentration/Level n.d.a. NIOSH NLP NOEC, NOEL No Observed Effect Concentration/Level
OECD Organisation for Economic Co-operation and Development

Organisation of Economic Co-operation and Developing organic Occupational Safety and Health Administration (USA) persistent, bioaccumulative and toxic Polyethylene Predicted No Effect Concentration org. OSHA

PBT PE PNEC

PNEC Predicted No Effect Concentration
pm parts per million
PVC Polyvinylchloride
REACH Registration, Evaluation, Authorisation and Restriction of Chemicals (REGULATION (EC) No
1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals)
REACH-IT List-No. 9xx-xxx-x No. is automatically assigned, e.g. to pre-registrations without a CAS
No. or other numerical identifier. List Numbers do not have any legal significance, rather they are purely
technical identifiers for processing a submission via REACH-IT.
RID Règlement concernant le transport International ferroviaire de marchandises Dangereuses (=
Regulation concerning the International Carriage of Dangerous Goods by Rail)
SVHC Substances of Very High Concern
Tel. Telephone
TOC Total organic carbon

Tel. TOC

Total organic carbon UN RTDG United Nations Recommendations on the Transport of Dangerous Goods

Page 8 of 8
Safety data sheet according to Regulation (EC) No 1907/2006, Annex II
Revision date / version: 01.11.2021 / 0008
Replacing version dated / version: 27.07.2021 / 0007
Valid from: 01.11.2021
PDF print date: 01.11.2021
COSMO PU-190.110

(COSMOPUR FaserPlus+)

VOC vPvB wwt

Volatile organic compounds very persistent and very bioaccumulative wet weight

The statements made here should describe the product with regard to the necessary safety precautions - they are not meant to guarantee definite characteristics - but they are based on our present up-to-date knowledge. No responsibility.

These statements were made by:

Chemical Check GmbH, Chemical Check Platz 1-7, D-32839 Steinheim, Tel.: +49 5233 94 17 0, Fax: +49 5233 94 17 90

© by Chemical Check GmbH Gefahrstoffberatung. The copying or changing of this document is forbidden except with consent of the Chemical Check GmbH Gefahrstoffberatung.