

Technische Info

metrische ISO Gewinde

metrische ISO Feingewinde

metrische ISO Feingewinde

M Steigung mm Kernlochbohrung mm 1,0 0,25 0,75 1,1 0,25 0,85 1,2 0,25 0,95 1,4 0,30 1,10 1,6 0,35 1,25 1,7 0,35 1,30 1,8 0,35 1,45 2,0 0,40 1,60 2,2 0,45 1,75 2,3 0,40 1,90 2,5 0,45 2,05 2,6 0,45 2,10 3,0 0,50 2,50 3,5 0,60 2,90
1,1 0,25 0,85 1,2 0,25 0,95 1,4 0,30 1,10 1,6 0,35 1,25 1,7 0,35 1,30 1,8 0,35 1,45 2,0 0,40 1,60 2,2 0,45 1,75 2,3 0,40 1,90 2,5 0,45 2,05 2,6 0,45 2,10 3,0 0,50 2,50
1,2 0,25 0,95 1,4 0,30 1,10 1,6 0,35 1,25 1,7 0,35 1,30 1,8 0,35 1,45 2,0 0,40 1,60 2,2 0,45 1,75 2,3 0,40 1,90 2,5 0,45 2,05 2,6 0,45 2,10 3,0 0,50 2,50
1,4 0,30 1,10 1,6 0,35 1,25 1,7 0,35 1,30 1,8 0,35 1,45 2,0 0,40 1,60 2,2 0,45 1,75 2,3 0,40 1,90 2,5 0,45 2,05 2,6 0,45 2,10 3,0 0,50 2,50
1,6 0,35 1,25 1,7 0,35 1,30 1,8 0,35 1,45 2,0 0,40 1,60 2,2 0,45 1,75 2,3 0,40 1,90 2,5 0,45 2,05 2,6 0,45 2,10 3,0 0,50 2,50
1,7 0,35 1,30 1,8 0,35 1,45 2,0 0,40 1,60 2,2 0,45 1,75 2,3 0,40 1,90 2,5 0,45 2,05 2,6 0,45 2,10 3,0 0,50 2,50
1,8 0,35 1,45 2,0 0,40 1,60 2,2 0,45 1,75 2,3 0,40 1,90 2,5 0,45 2,05 2,6 0,45 2,10 3,0 0,50 2,50
2,0 0,40 1,60 2,2 0,45 1,75 2,3 0,40 1,90 2,5 0,45 2,05 2,6 0,45 2,10 3,0 0,50 2,50
2,2 0,45 1,75 2,3 0,40 1,90 2,5 0,45 2,05 2,6 0,45 2,10 3,0 0,50 2,50
2,5 0,45 2,05 2,6 0,45 2,10 3,0 0,50 2,50
2,6 0,45 2,10 3,0 0,50 2,50
3,0 0,50 2,50
3,5 0,60 2,90
4,0 0,70 3,30
4,5 0,75 3,50 4,5 0,75 3,70
5.0 0.80 4.20
6,0 1,00 5,00
7,0 1,00 6,00
8,0 1,25 6,80
9,0 1,25 7,80
10,0 1,50 8,50
11,0 1,50 9,50 12,0 1,75 10,20
14,0 2,00 12,00
16,0 2,00 14,00
18,0 2,50 15,50
20,0 2,50 17,50
22,0 2,50 19,50
24,0 3,00 21,00
27,0 3,00 24,00
30,0 3,50 26,50 33,0 3,50 29,50
36,0 4,00 32,00
39,0 4,00 35,00
42,0 4,50 37,50
45,0 4,50 40,50
48,0 5,00 43,00
52,0 5,00 47,00 F0 F0 F0
56,0 5,50 50,50 60,0 5,50 54,50
64,0 5,50 54,50 54,50 58,00
68,0 6,00 62,00

M	Steigung mm	Kernlochbohrung mm
2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 7,0 8,0 8,0 9,0 10,0 10,0 11,0 11,0 12,0 12,0 12,0 14,0 14,0 14,0 14,0 15,0 15,0 16,0 17,0 17,0 18,0 18,0 20,0 20,0 22,0 22,0 22,0 22,0 22,0 2	0,35 0,35 0,35 0,50 0,50 0,50 0,50 0,75 0,75 0,75 1,00 0,75 1,00 1,25 1,00 1,25 1,50 1,00 1,25 1,50 1,00 1,25 1,50 1,00 1,50 1,50 1,00 1,50 1,00 1,50 1,00 1,50 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00 1,50 2,00 1,00	2,15 2,65 3,15 3,50 4,00 4,50 5,00 5,20 6,20 7,20 7,00 8,20 8,00 9,20 9,00 8,80 10,20 10,00 11,00 10,50 13,00 12,80 10,50 13,00 12,50 14,00 13,50 15,50 16,00 15,50 17,00 16,50 16,50 16,00 19,00 19,00 19,00 10,0
24,0 24,0 25,0	1,50 2,00 1,00	22,50 22,00 24,00

М	Steigung mm	Kernlochbohrung mm
25.0 25.0 26.0 27.0 27.0 28.0 28.0 28.0 30.0 30.0 30.0 30.0 33.0 33.0 33.0 36.0 36.0 36.0 36.0 39.0 39.0 40.0 40.0 40.0 42.0 45.0 45.0 45.0 45.0 48.0 48.0 48.0	1,50 2,00 1,50 1,00 1,50 2,00 1,50 2,00 1,50 2,00 3,00 2,00 3,00 1,50 2,00 3,00	23,50 23,00 24,50 26,00 25,50 25,00 27,00 26,50 26,50 28,00 27,00 30,00 31,50 31,00 30,00 33,50 34,50 34,50 34,00 35,50 37,50 37,50 37,00 36,50 37,50 37,00 36,50 37,50 37,00 36,50 37,50 37,00 36,50 37,50 37,00 36,50 37,50 37,00 36,50 37,50 40,50
50,0 50,0 50,0 52,0 52,0 52,0	1,50 2,00 3,00 1,50 2,00 3,00	48,50 48,00 47,00 50,50 50,00 49,00

Grobgewinde UNC

Unified Feingewinde

kegelige Rohrgewinde

IIIIO	0	W la abbaba
UNC	Gangzahl auf 1 Zoll	Kernlochbohrung mm
1 2 3 4 5 6 8 10 12 1/4" 5/16" 3/8" 7/16" 1/2" 9/16" 5/8" 3/4" 7/8" 1" 1 1/8" 1 1/4" 1 3/8" 1 1/2" 1 3/4" 2 3/4"	64 56 48 40 40 32 32 24 24 20 18 16 14 13 12 11 10 9 8 7 7 6 6 6 5 4,5	1,50 1,80 2,10 2,30 2,60 3,50 3,50 4,50 4,50 6,60 8,00 9,40 10,75 12,25 13,50 16,50 19,50 22,25 25,00 28,25 30,75 34,00 39,50 45,25

UNF	Gangzahl auf 1 Zoll	Kernlochbohrung mm
0 1 2 3 4 5 6 8 10 12 1/4" 5/16" 3/8" 7/16" 1/2" 9/16" 5/8" 3/4" 7/8" 1 1/8" 1 1/8" 1 1/4" 1 3/8" 1 1/2"	80 72 64 56 48 44 40 36 32 28 28 24 24 20 20 18 18 16 14 12 12 12	1,30 1,60 1,90 2,10 2,40 2,70 3,00 3,50 4,10 4,70 5,50 6,90 8,50 9,90 11,50 12,90 14,50 17,50 20,40 23,30 26,50 29,50 32,70 36,00

	Gewindebohrer in Zoll	Kernlochbohrung mm
kegeliges Rohr- gewinde	1/8 1/4 3/8 1/2 3/4 1 1 1/4 1 1/2 2	8,10 10,70 14,25 17,70 23,00 29,00 37,60 43,50 55,00
amerika- nisches kegeliges Rohr- gewinde NPT	1/16 1/8 1/4 3/8 1/2 3/4 1 1 1/4 1 1/2 2	6,10 8,50 11,00 14,50 18,00 23,00 29,00 38,00 44,00 56,00
amerika- nisches kegeliges Rohr- gewinde NPTF	1/16 1/8 1/4 3/8 1/2 3/4 1 1 1/4 1 1/2 2	6,25 8,60 11,10 14,70 17,85 23,40 29,40 38,10 44,00 56,40

Technische Info

Whitworth Gewinde

W	Gangzahl auf 1 Zoll	Kernlochbohrung mm
3/32"	48	1,80
1/8"	40	2,50
5/32"	32	3,10
3/16"	24	3,60
7/32"	24	4,40
1/4"	20	5,10
5/16"	18	6,50
3/8"	16	7,90
7/16"	14	9,30
1/2"	12	10,50
9/16"	12	12,00
5/8"	11	13,50
3/4"	10	16,50
7/8"	9 8 7	19,25
1"	8	22,00
1 1/8"		24,75
1 1/4"	7	27,75
1 3/8"	6	30,50
1 1/2"	6 6 5	33,50
1 5/8"	5 5	35,50
1 3/4" 1 7/8"		39,00
1 7/6 2"	4,5 4,5	41,50 44,50
2 1/4"	4,5	50,00
2 1/4	4	56,50
2 3/4"	3,5	62,00
3"	3,5	68,50

Whitworth Gewinde

G	Gangzahl auf 1 Zoll	Kernlochbohrung mm
1/8"	28	8,80
1/4"	19	11,80
3/8"	19	15,25
1/2"	14	19,00
5/8"	14	21,00
3/4"	14	24,50
7/8"	14	28,25
1"	11	30,75
1 1/8"	11	35,50
1 1/4"	11	39,50
1 3/8"	11	42,00
1 1/2"	11	45,20
1 5/8"	11	49,60
1 3/4"	11	51,40
2"	11	57,20
2 1/4"	11	63,30
2 3/8"	11	67,00
2 1/2"	11	72,80
2 3/4"	11	79,10
3"	11	85,50
3 1/4"	11	91,50
3 1/2"	11	98,00
3 3/4"	11	104,00
4"	11	110,50

für Gewindeformer - metrische ISO Gewinde

М	Steigung mm	Kernlochbohrung mm
M3	0,50	$2,75 \pm 0,03$
M4	0,70	$3,65 \pm 0,03$
M5	0,80	$4,60 \pm 0,03$
M6	1,00	$5,55 \pm 0,04$
M8	1,25	$7,40 \pm 0,04$
M10	1,50	$9,30 \pm 0,05$
M12	1,75	$11,10 \pm 0,05$
M14	2,00	$13,10 \pm 0,05$

metrische ISO Feingewinde

M	Steigung mm	Kernlochbohrung mm
M3	0,50	$2,75 \pm 0,03$
M4	0,70	$3,65 \pm 0,03$
M5	0,80	$4,60 \pm 0,03$
M6	1,00	$5,55 \pm 0,04$
M8	1,25	$7,40 \pm 0,04$
M10	1,50	$9,30 \pm 0,05$
M12	1,75	$11,10 \pm 0,05$
M14	2,00	$13,10 \pm 0,05$

Formel für die Berechnung der Gewindekernlöcher d = Flanken-Ø + Steigung

Fehlerhaftes Gewindeschneiden und seine Ursachen

Gewindeschneiden ist ein schwieriges Verfahren. Das Ergebnis hängt von zahlreichen Faktoren ab, viele haben mit dem Gewindebohrer absolut nichts zu tun. Bevor man bei fehlerhaften Gewinden den Fehler beim Gewindebohrer sucht, sollte man zu-nächst alle anderen möglichen Fehlerquellen, wie Maschine, Vorrichtung oder falsche Anwendung untersuchen. Erst nach genauer Prüfung dieser Faktoren kann gesagt werden, ob das Problem beim Gewindebohrer zu suchen ist.

Nachstehend sind mögliche Ursachen, aus denen Fehler beim Gewindeschneiden resultieren, aufgeführt:

- ungeeignete oder in einem schlechten Zustand befindliche Maschine
- 2 schlecht konzipierte oder mangelhafte Vorrichtung
- 3 Spiel oder Rundlauffehler an der Spindel
- 4 fehlerhafte Werkzeug- oder Werkstückspannung
- 5 Versatz vom Gewindebohrer zur Bohrung
- 6 falsche Auswahl des Gewindebohrers
- 7 falscher Spanwinkel für den zu bearbeiten den Werkstoff
- 8 verschlissener Gewindebohrer der nachgeschliffen werden muss
- 9 falsche Bohrung, zu klein und konisch
- 10 Schnittgeschwindigkeit zu hoch
- 11 ungeeignete oder unzureichende Schmierung

ausgerissene Gewinde

Spanwinkel γ nicht richtig; falscher Gewindebohrer; Bohrungsdurchmesser zu klein; Schmiermittel falsch oder zu wenig

zu großes Gewinde

Anschnitt nicht zentrisch durch fehlerhaftes Nachschleifen;

Rundlauffehler in der Spindel oder Werkzeugaufnahme:

Versatz vom Gewindebohrer zur Bohrung; Schmiermittel falsch oder unzureichend; ungenaue Maschine oder Vorrichtung; Spänestau in den Nuten; fehlerhafte Werkstückspannung

schlechte Oberfläche am Gewinde

Gewindebohrer verschlissen (nachschleifen); Bohrung zu klein;

Schmiermittel falsch oder unzureichend; Spanwinkel γ nicht richtig (falscher Gewindebohrer).

Gewinde zu klein oder zerstört

falscher Vorschub; axiales Spindelspiel; zu langer Anschnitt (falscher Gewindebohrer)

Bruch des Gewindebohrers

Bohrung zu klein;

verschlissener Gewindebohrer (hätte nachgeschliffen werden müssen);

Spanwinkel γ nicht richtig (falscher Gewindebohrer); zu kurzer Anschnitt (falscher Gewindebohrer); Schnittgeschwindigkeit zu hoch

Spänestau in den Nuten

Einsatz des falschen Gewindebohrers; Schmierung falsch oder unzureichend

Ausbrechen des Gewindes am Gewindebohrer

Spanwinkel γ zu groß; Einsatz des falschen Gewindebohrers; Schnittgeschwindigkeit zu hoch; Klemmen der Späne beim Zurückdrehen

zu hoher Verschleiß am Gewindebohrer

Schnittgeschwindigkeit zu hoch; Spanwinkel γ falsch (falscher Gewindebohrer); zusätzliche Oberflächenbehandlung bzw. Beschichtung des Gewindebohrers erforderlich

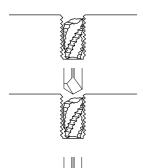
Überhitzung des Gewindebohrers

Schmierung falsch oder unzureichend; Gewindebohrer verschlissen (nachschleifen)

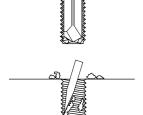
Leistungsbedarf zu hoch

Bohrung zu klein; Gewindebohrer verschlissen (nachschleifen); Spanwinkel γ falsch (falscher Gewindebohrer); Schmierung falsch oder unzureichend

Schnittwertempfehlungen Maschinen-Gewindebohrer


	ISO P							ISO M	ISC	K	ISO N ISO S				ISO H																	
Z	sehr gut geeignet		Kol	hlenstoff-S	tahl	legierter	vergüte	ter-Stahl	Werkzeug	VA Guss		erkzeug VA		Nerkzeug VA		Verkzeug VA		erkzeug VA		Guss		Guss		Guss		Alum	inium	Ti	tan	Nickel	gehärte	ter Stahl
satz	O gut gee	eignet	C ≤ 0,2 %	0,25-0,4%	C ≥ 0,45%	Stahl	-35 HRc	35-45 HRc	Stahl	Stahl	GG	GGG	Cu-Leg.	Al	Al-Legierung	Ti	Ti-Legierung	Ni-Legierung	45-52 HRc	53-63 HRc												
Ë								\circ		\bigcirc	\bigcirc	\circ	0	\bigcirc	0	\bigcirc	0	0	0	0												
Schr	ittgeschw.	unbesch.	5-20	5-15	5-12	5-10	2-8	2-6	5-10	5-12	8-20	8-20	10-12	20-25	10-40	2-6	2-6	2-6														
Vcm	/min.	besch.	5-40	5-30	5-24	5-20	2-12	2-12	5-20	5-24	8-30	8-30	10-20	30-40	10-60				2-6	2-3												
Kühl	-/	Emulsion	/	1	/	/	/	1	1	1	1	1	/	/	/																	
Schr	miermittel	Schneidöl	/	1	\	/	/	/	/				/	\	/	/	1	/	1	1												

Die angegebenen Richtwerte sind der Werkstückaufspannung und den Maschinenverhältnissen anzupassen!


Umrechnungsfaktoren und Schnittwertempfehlungen für Gewindeformer:

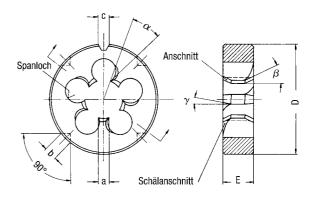
HSS-Gewindeformer, unbeschichtet: Vc m/min. = Faktor 1,5 HSS-Gewindeformer, beschichtet: Vc m/min. = Faktor 1,5 VHM-Gewindeformer: Vc m/min. = 40-70

VHM-Ausbohrer, Ausbohren beschädigter Gewindebohrer

- 1. Positionieren Sie den Bohrer am Zentrum des beschädigten Gewindebohrers; beachten Sie bitte, dass Werkstück und Bohrer gut eingespannt sind. Wenn der Kopf des beschädigten Gewindebohrers aus dem Werkstück herausragt, schleifen Sie die beschädigte Oberfläche glatt um das Zentrum des Gewindebohrers leichter anbohren zu können.
- 2. Führen Sie eine erste Zentrierung mit geringem Vorschub durch, dann ziehen Sie den Bohrer zurück. Für diesen Schritt benutzen Sie bitte kein Schmiermittel.

- 3. Wählen Sie den entsprechenden Bohrer mittels den vorgenannten Auswahlkriterien. Bohren Sie das Loch mit festem Vorschub/Geschwindigkeit; unterbrechen Sie den Vorgang gelegentlich, um Späne zu entfernen. Bitte verwenden Sie ausreichend qualitativ hochwertiges Schmiermittel.
- 4. Wenn die Bohrung gesäubert ist, können die verbliebenen Reste des Gewindebohrers mittels Anreißnadel oder ähnlich spitzem Werkzeug leicht entfernt werden, das Gewindeschneiden kann dann fortgesetzt werden.

Schnittwerte und Anmerkungen


- Vc = ca. 20 –25 m/min
- Vorschub f = ca. 0,01 0,05 mm/U
- · Wählen Sie eine stabile Aufspannung
- · Setzen Sie ein qualitativ hochwertiges Schmiermittel ein
- · Dieses Werkzeug sollte nicht bei der Bearbeitung weicher Stähle, Aluminiumlegierungen oder anderer weicher Materialien eingesetzt werden
- Das Werkzeug sollte von Zeit zu Zeit nachgeschärft werden

Begriffe und Maßerklärungen für Gewindeschneideisen

- Außendurchmesser (n. DIN, Toleranz f10)
- Ε Breite
- Zahnbreite
- Nutbreite С
- Durchmesser der Bohrung für Halteschraube h
- Spanwinkel
- Anschnittwinkel, halber Senkwinkel
- Schälanschnittwinkel

Schneideisentoleranzen

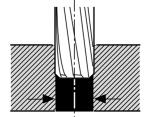
Standardmäßig liefern wir Schneideisen für die Toleranzklasse "mittel". Schneideisen für andere Toleranzklassen auf Anfrage lieferbar.

V_C = Schnittgeschwindigkeit (m/min) f = Vorschub pro Umdrehung (mm)

TIN-beschichtete Reibahlen

n = Drehzahl (min-1) - mittlerer Wert

f bis 100% höher als bei unbeschichteten Reibahlen


V_c kann bis 50% erhöht werden

	Werkstoff				R	eibahlen-	Durchme	sser (mn	1)			Kühl- und
ISO	vverkston		5	8	10	15	20	25	30	40	50	Schmiermittel
	Stahl bis 500 N/mm2	Vc f n	10-12 0,1 700	10-12 0,13 440	10-12 0,15 350	10-12 0,2 232	10-12 0,25 176	10-12 0,25 137	10-12 0,3 115	10-12 0,35 88	10-12 0,4 71	Flussstahl: Bohrölemulsion, Talg, Schneidöl
	Stahl 500-700 N/mm2	Vc f n	8-10 0,1 572	8-10 0,13 358	8-10 0,15 288	8-10 0,2 191	8-10 0,25 143	8-10 0,25 115	8-10 0,3 95	8-10 0,35 72	8-10 0,4 58	Werkzeugstahl: Rapsölersatz
P	Stahl 700-900 N/mm2	Vc f n	6-8 0,1 445	6-8 0,13 278	6-8 0,15 222	6-8 0,2 148	6-8 0,25 111	6-8 0,25 89	6-8 0,3 74	6-8 0,35 56	6-8 0,4 45	Legierter Stahl: Rapsölersatz, Schneidöl
	Stahl 900-1100 N/mm2	Vc f n	4-6 0,08 318	4-6 0,1 198	4-6 0,1 159	4-6 0,15 106	4-6 0,2 80	4-6 0,25 64	4-6 0,3 53	4-6 0,35 40	4-6 0,4 32	Hitzebeständiger und INOX Stahl: Bohröl
	Stahlguss 400-500 N/mm2	Vc f n	6-10 0,1 510	6-10 0,13 318	6-10 0,15 254	6-10 0,2 170	6-10 0,25 127	6-10 0,25 102	6-10 0,3 85	6-10 0,35 64	6-10 0,49 51	Rapsöl
	Stahlguss 500-700 N/mm2	Vc f n	4-6 0,07 318	4-6 0,08 198	4-6 0,1 159	4-6 0,13 106	4-6 0,18 80	4-6 0,18 64	4-6 0,22 53	4-6 0,25 40	4-6 0,3 32	Rapsöl
	Grauguss bis 200 HB	Vc f n	8-10 0,18 572	8-10 0,2 358	8-10 0,23 288	8-10 0,25 191	8-10 0,3 143	8-10 0,3 115	8-10 0,35 95	8-10 0,4 72	8-10 0,45 58	Trocken, Rapsöl
K	Grauguss über 200 HB	Vc f n	4-6 0,12 318	4-6 0,15 198	4-6 0,17 159	4-6 0,2 106	4-6 0,25 80	4-6 0,25 64	4-6 0,3 53	4-6 0,35 40	4-6 0,4 32	Trocken, Rapsöl
1	Temperguss bis 450 N/mm2	Vc f n	8-10 0,18 572	8-10 0,2 358	8-10 0,23 288	8-10 0,25 191	8-10 0,3 143	8-10 0,3 115	8-10 0,35 95	8-10 0,4 72	8-10 0,45 58	Trocken, Bohrölemulsion
	Temperguss 450-600 N/mm2	Vc f n	6-8 0,15 445	6-8 0,18 278	6-8 0,2 222	6-8 0,2 148	6-8 0,25 111	6-8 0,3 89	6-8 0,35 74	6-8 0,4 56	6-8 0,4 45	Trocken, Bohrölemulsion
	Kupfer	Vc f n	8-12 0,15 636	8-12 0,18 398	8-12 0,2 318	8-12 0,25 212	8-12 0,3 158	8-12 0,3 127	8-12 0,35 106	8-12 0,4 80	8-12 0,45 54	Bohrölemulsion
	Messing, zäh	Vc f n	10-12 0,2 700	10-12 0,25 440	10-12 0,3 350	10-12 0,35 232	10-12 0,4 176	10-12 0,4 137	10-12 0,45 115	10-12 0,5 88	10-12 0,6 71	Trocken, Rapsöl,
	spröde	Vc f n	12-14 0,2 828	12-14 0,25 518	12-14 0,3 413	12-14 0,35 276	12-14 0,4 207	12-14 0,4 166	12-14 0,45 132	12-14 0,5 104	12-14 0,6 83	Bohrölemulsion
N	Leichtmetalle	Vc f n	15-20 0,15 1140	15-20 0,18 720	15-20 0,2 573	15-20 0,25 382	15-20 0,3 288	15-20 0,3 225	15-20 0,35 189	15-20 0,4 144	15-20 0,45 117	Alu, zäh: Terpentinölersatz und Petroleum 4:5 Alu, ausgehärtet: Rapsöl
	Silumin	Vc f n	10-12 0,15 700	10-12 0,18 440	10-12 0,2 350	10-12 0,25 232	10-12 0,3 176	10-12 0,3 137	10-12 0,35 115	10-12 0,4 88	10-12 0,4 71	Petroleum, Terpentinöl
	Kunststoff, hart	Vc f n	4-6 0,2 318	4-6 0,25 198	4-6 0,3 159	4-6 0,35 106	4-6 0,4 80	4-6 0,45 64	4-6 0,45 53	4-6 0,5 40	4-6 0,5 32	Trocken, Pressluft,
	weich	Vc f n	6-10 0,25 510	6-10 0,3 318	6-10 0,35 254	6-10 0,4 170	6-10 0,45 127	6-10 0,5 102	6-10 0,55 85	6-10 0,6 64	6-10 0,6 51	kein Wasser

Untermaße zum Reiben (Richtwerte)

Normal wird das vorgebohrte Loch in einem Arbeitsgang gerieben, wofür bei Verwendung fester Reibahlen die in nachstehender Tabelle angegebenen Untermaße empfohlen werden.

Workstoff	Werkstoff			ereich der l	Bohrung in	mm
Werkston		3 bis 10	5 bis 10		20 bis 30	über 30
Stahl bis 700 N/mm²		0,1-0,2 mm	0,2 mm	0,2-0,3 mm	0,3-0,4 mm	0,4-0,5 mm
Stahl 700-1100 N/mm ²		0,1-0,2 mm	0,2 mm	0,2 mm	0,3 mm	0,3-0,4 mm
Stahlguss		0,1-0,2 mm	0,2 mm	0,2 mm	0,2-0,3 mm	0,3-0,4 mm
Grauguss		0,1-0,2 mm	0,2 mm	0,2-0,3 mm	0,3-0,4 mm	0,4-0,5 mm
Temperguss		0,1-0,2 mm	0,2 mm	0,3 mm	0,4 mm	0,5 mm
Kupfer		0,1-0,2 mm	0,2-0,3 mm	0,3-0,4 mm	0,4-0,5 mm	0,5 mm
Messing, Bronze		0,1-0,2 mm	0,2 mm	0,2-0,3 mm	0,3 mm	0,3-0,4 mm
Leichtmetalle		0,1-0,2 mm	0,2-0,3 mm	0,3-0,4 mm	0,4-0,5 mm	0,5 mm
Kunststoffe	hart weich	0,1-0,2 mm 0,1-0,2 mm	0,3 mm 0,2 mm	0,4 mm 0,2 mm	0,4-0,5 mm 0,3 mm	0,5 mm 0,3-0,4 mm

Bei Verwendung von Reibahlen mit geschlitztem Körper und Reibahlen mit eingesetzten Messern soll die Reibzugabe verringert werden.

Bei sehr hohen Anforde-

rungen an die Lochwandungsgüte und bei besonders harten Werkstoffen wird vor- und fertiggerieben, wobei zweckmäßigerweise die neben stehenden Tabellenwerte in zwei gleichen Teilen gerieben werden.

Zu geringe Spanabnahme hat meistens vorzeitige Abstumpfung zur Folge, weil die Zähne nicht mehr zum Schneiden kommen, sondern lediglich die Bohrung aufdrücken.

Schnittwertempfehlungen Maschinen-Reibahlen aus Hartmetall bzw. Hartmetallbohrer

 $egin{aligned} oldsymbol{V_C} &= \mbox{Schnittgeschwindigkeit (m/min)} \\ f &= \mbox{Vorschub pro Umdrehung (mm)} \end{aligned}$

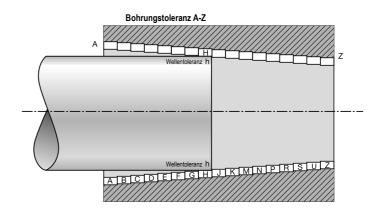
n = Drehzahl (min-1) - mittlerer Wert

	Mandage 66				R	eibahlen-	Durchme	esser (mn	n)			Kühl- und
ISO	Werkstoff		5	8	10	15	20	25	30	40	50	Schmiermittel
	Stahl bis 700 N/mm²	Vc f n	10-15 0,15 796	10-15 0,18 498	10-15 0,2 398	10-15 0,25 266	10-15 0,3 198	10-15 0,3 159	10-15 0,35 133	10-15 0,4 100	10-15 0,5 80	Flussstahl: Bohrölemulsion, Talg, Schneidöl Werkzeugstahl:
	Stahl 700-1000 N/mm ²	Vc f n	8-12 0,15 636	8-12 0,18 398	8-12 0,2 318	8-12 0,25 212	8-12 0,3 158	8-12 0,3 127	8-12 0,35 106	8-12 0,4 80	8-12 0,5 64	Rapsölersatz Legierter Stahl: Rapsölersatz, Schneidöl
P	Stahl 1000-1400 N/mm ²	Vc f n	6-10 0,12 510	6-10 0,15 318	6-10 0,15 254	6-10 0,18 170	6-10 0,2 127	6-10 0,2 102	6-10 0,25 85	6-10 0,3 64	6-10 0,4 51	Hitzebeständiger und INOX Stahl: Bohröl
	Stahlguss 400-500 N/mm²	Vc f n	8-12 0,15 636	8-12 0,18 398	8-12 0,2 318	8-12 0,25 212	8-12 0,3 158	8-12 0,3 127	8-12 0,35 106	8-12 0,4 80	8-12 0,5 64	Rapsöl
	Stahlguss 500-700 N/mm²	Vc f n	6-10 0,12 510	6-10 0,15 318	6-10 0,15 254	6-10 0,18 170	6-10 0,2 127	6-10 0,2 102	6-10 0,25 85	6-10 0,3 64	6-10 0,4 51	Rapsöl
	Grauguss bis 200 HB	Vc f n	8-12 0,2 572	8-12 0,26 358	8-12 0,3 288	8-12 0,35 191	8-12 0,4 158	8-12 0,4 127	8-12 0,45 133	8-12 0,5 100	8-12 0,6 80	Trocken, Rapsöl
K	Grauguss über 200 HB	Vc f n	6-10 0,15 636	6-10 0,18 398	6-10 0,2 318	6-10 0,25 212	6-10 0,3 158	6-10 0,3 127	6-10 0,35 106	6-10 0,4 80	6-10 0,5 64	Trocken, Rapsöl
	Temperguss	Vc f n	8-12 0,3 636	8-12 0,36 398	8-12 0,4 318	8-12 0,45 212	8-12 0,5 158	8-12 0,5 127	8-12 0,55 106	8-12 0,6 80	8-12 0,7 64	Trocken, Bohrölemulsion
	Kupfer	Vc f n	20-30 0,2 1592	20-30 0,26 995	20-30 0,3 796	20-30 0,35 531	20-30 0,4 398	20-30 0,4 318	20-30 0,45 345	20-30 0,5 259	20-30 0,6 207	Bohrölemulsion
	Messing Rotguss	Vc f n	15-25 0,2 1272	15-25 0,25 798	15-25 0,3 637	15-25 0,35 425	15-25 0,4 318	15-25 0,4 255	15-25 0,45 265	15-25 0,5 199	15-25 0,6 159	Trocken, Rapsöl Bohrölemulsion
N	Gussbronze	Vc f n	15-25 0,15 1272	15-25 0,18 798	15-25 0,2 637	15-25 0,25 425	15-25 0,3 318	15-25 0,3 255	15-25 0,35 265	15-25 0,4 199	15-25 0,45 159	Bohrölemulsion
	Aluminium- Legierungen über 80 Brinell	Vc f n	10-12 0,15 1272	15-25 0,2 798	15-25 0,26 637	15-25 0,3 425	15-25 0,35 318	15-25 0,4 255	15-25 0,4 265	15-25 0,45 199	15-25 0,5 159	Alu, zäh: Terpentinölersatz und Petroleum 4:5 Alu, ausgehärtet: Rapsöl
	Kunststoffe	Vc f n	15-25 0,3 1272	15-25 0,36 798	15-25 0,4 637	15-25 0,45 425	15-25 0,5 318	15-25 0,5 255	15-25 0,55 265	15-25 0,6 199	15-25 0,7 159	Trocken, Pressluft, kein Wasser

Untermaße zum Reiben (Richtwerte)

Normal wird das vorgebohrte Loch in einem Arbeitsgang gerieben, wofür bei Verwendung fester Reibahlen die in nachstehender Tabelle angegebenen Untermaße empfohlen werden.

Werkstoff	Dur	chmesserb	ereich der l	Bohrung in	mm
Werkston	3 bis 10	5 bis 10	10 bis 20	20 bis 30	über 30
Stahl bis 700 N/mm²	0,1-0,2 mm	0,2 mm	0,2-0,3 mm	0,3-0,4 mm	0,4-0,5 mm
Stahl 700-1100 N/mm²	0,1-0,2 mm	0,2 mm	0,2 mm	0,3 mm	0,3-0,4 mm
Stahlguss	0,1-0,2 mm	0,2 mm	0,2 mm	0,2-0,3 mm	0,3-0,4 mm
Grauguss	0,1-0,2 mm	0,2 mm	0,2-0,3 mm	0,3-0,4 mm	0,4-0,5 mm
Temperguss	0,1-0,2 mm	0,2 mm	0,3 mm	0,4 mm	0,5 mm
Kupfer	0,1-0,2 mm	0,2-0,3 mm	0,3-0,4 mm	0,4-0,5 mm	0,5 mm
Messing, Bronze	0,1-0,2 mm	0,2 mm	0,2-0,3 mm	0,3 mm	0,3-0,4 mm
Leichtmetalle	0,1-0,2 mm	0,2-0,3 mm	0,3-0,4 mm	0,4-0,5 mm	0,5 mm
Kunststoffe hart weich	0,1-0,2 mm 0,1-0,2 mm	0,3 mm 0,2 mm	0,4 mm 0,2 mm	0,4-0,5 mm 0,3 mm	0,5 mm 0,3-0,4 mm

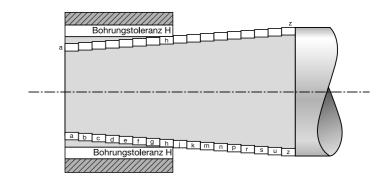

Bei Verwendung von Reibahlen mit geschlitztem Körper und Reibahlen mit eingesetzten Messern soll die Reibzugabe ver-

Bei sehr hohen Anforderungen an die Lochwandungsgüte und bei besonders harten Werkstoffen wird vor- und fertiggerieben, wobei zweckmäßigerweise die neben stehenden Tabellenwerte in zwei gleichen Teilen gerieben werden.

Zu geringe Spanabnahme hat meistens vorzeitige Abstumpfung zur Folge, weil die Zähne nicht mehr zum Schneiden kommen, sondern lediglich die Bohrung aufdrücken.

(Auszug aus DIN 7155) Nennmaße in μ (= 0,001 mm)

Beim System Einheitswelle erhalten alle Wellen h-Toleranzen. Das Größtmaß einer Welle geht dadurch bis zur Nulllinie und ist gleich dem Nennmaß. Das Kleinstmaß der Welle ist um die Toleranz kleiner als ihr Nennmaß.


*) Vorzugsweise nach DIN 7157 (S = Spielpassung)

	ach DIN 7157 (S =	- Spieipas	sauriy)				Nannmaß	über bis	mm		
Bohrungen	Passungs- art*)	1	3 6	6	10 14	18 24	30 40	50 65	80 100	120 140 160	180 200 225
W	elle	3	6	10	14 18 0	24 30 0	40 50 0	65 80	100 120 0	140 160 180 0	200 225 250 0
h	5	- 4 - 6	- 5 - 9	- 6 -12	- 8 - 15	- 9 - 18	- 11 - 21	- 13 - 26	- 15 - 30	- 18 - 36	- 20 - 40
P 6		- 12	- 17	-21	- 26	- 31	- 37	– 45	- 52	-61	- 70
N 6		- 4 - 10	- 5 -13	- 7 -16	- 9 - 20	– 11 – 24	- 12 - 28	- 14 - 33	– 16 – 38	– 20 – 45	– 22 – 51
M 6		- 2 - 8	- 1 - 9	- 3 -12	- 4 - 15	- 4 - 17	- 4 -20	- 5 -24	- 6 - 28	- 8 -33	- 8 - 37
J 6		+ 3 - 4	+ 5 - 3	+ 5 - 4	+ 6 - 5	+ 8 - 5	+ 10 - 6	+ 13 - 6	+ 16 - 6	+ 18 - 7	+ 22 - 7
H 6		+ 6	+ 8	+ 9	+ 11 0	+ 13 0	+ 16 0	+ 19 0	+ 22	+ 25 0	+ 29 0
w h	elle 1 6	0 - 6	0 - 8	0 - 9	0 - 11	0 - 13	0 - 16	0 - 19	0 - 22	0 - 25	0 - 29
S 7		- 14 - 24	- 15 - 27	- 17 - 32	- 21 - 39	- 27 - 48	- 34 - 59	-42 -48 -72 -78	-58 -66 -93 -101	-77 -85 -93 -117 -125 -133	-105 -113 -123 -151 -159 -169
R 7		- 10 - 20	- 11 - 23	- 13 - 28	– 16 – 34	- 20 - 41	- 25 - 50	-30 -32 -60 -62	-38 -41 -73 -76	-48 -50 -53 -88 -90 -93	-60 -63 -67 -106 -109 -113
N 7		- 4 -14	- 4 -16	- 4 - 19	- 5 -23	- 7 -28	- 8 - 33	- 9 - 39	- 10 - 45	- 12 - 52	- 14 - 60
M 7		- 2 -12	0 - 12	0 - 15	0 - 18	0 - 21	0 - 25	0 - 30	0 - 35	0 - 40	0 - 46
K7		+ 3	+ 3	+ 5	+ 6 - 12	+ 6 - 15	+ 7 - 18	+ 9 -21	+ 10 - 25	+ 12 - 28	+ 13 - 33
J 7		+ 3	+ 6	+ 8 - 7	+ 10 - 8	+ 12 - 9	+ 14 - 11	+ 18 - 12	+ 22 - 13	+ 26 - 14	+ 30 - 16
Н7	s	+ 9	+ 12	+ 15	+ 18	+ 21	+ 25	+ 30	+ 35	+ 40 0	+ 46 0
G 7	s	+ 12 + 2	+ 16	+ 20	+ 24	+ 28	+ 34	+ 40	+ 47	+ 54	+ 61
F 7		+ 16	+ 4 + 22	+ 5 + 28	+ 6 + 34	+ 7 + 41	+ 9 + 50	+ 10 + 60	+ 12 + 71	+ 14 + 83	+ 15 + 96
W	elle 9	+ 6	+ 10	+ 13	+ 16	+ 20	+ 25	+ 30	+ 36	+ 43	+ 50
H 8	S	- 25 + 14	- 30 + 18	- 36 + 22	- 43 + 27	- 52 + 33	- 62 + 39	- 74 + 46	- 87 + 54	-100 + 63	- 115 + 72
H 11	s	0 + 60	0 + 75	0 + 90	0 +110	0 +130	0 +160	0 +190	0 +220	0 +250	0 +290
F8	s	0 + 20	0 + 28	0 + 35	0 + 43	0 + 53	0 + 64	0 + 76	0 + 90	0 +106	0 +122
		+ 6 + 39	+ 10 + 50	+ 13 + 61	+ 16 + 75	+ 20 + 92	+ 25 +112	+ 30 +134	+ 36 +159	+ 43 +185	+ 50 +215
E 9	S	+ 14 + 60	+ 20 + 78	+ 25 + 98	+ 32 +120	+ 40 +149	+ 50 +180	+ 60 +220	+ 72 +260	+ 85 +305	+100 +355
D 10	S	+ 20 +120	+ 30	+ 40	+ 50 +205	+ 65 +240	+ 80 +290	+100 +330 +340	+120 +390 +400	+145 +450 +460 +480	+170
C 11	S elle	+ 60	+ 70	+ 80	+ 95	+110	+120 +130	+140 +150	+170 +180	+200 +210 +230	+530 +550 +570 +240 +260 +280
h [,]	elle 11	- 60	-75	- 90	-110	-130	-160	-190	-220	-250	-290
H 11	S	+ 60	+ 75	+ 90	+110	+130 0	+160	+190	+220	+250 0	+290 0
D 11	s	+ 80 + 20	+105 + 30	+130 + 40	+160 + 50	+195 + 65	+240 + 80	+290 +100	+340 +120	+395 +145	+460 +170
C 11	s	+120 + 60	+145 + 70	+170 + 80	+205 + 95	+240 +110	+280 +290 +120 +130	+330 +340 +140 +150	+390 +400 +170 +180	+450 +460 +480 +200 +210 +230	+530 +550 +570 +240 +260 +280
A 11	s	+330 +270	+345 +270	+370 +280	+400 +290	+430 +300	+470 +480 +310 +320	+530 +550 +340 +360	+600 +630 +380 +410	+710 +770 +830 +460 +520 +580	+950 +1030 +1110 +660 +740 +820

ISO-Passungen System Einheitsbohrung

(Auszug aus DIN 7154) Nennmaße in μ (= 0,001 mm)

Bei diesem System werden alle Bohrungen einheitlich mit einer H-Toleranz gefertigt. Das Kleinstmaß einer Bohrung geht dadurch genau bis zur Nulllinie und ist gleich dem Nennmaß. Das Größtmaß geht um die Toleranz über die Nulllinie hinaus.

*) Vorzugsweise nach DIN 7157 (P = Presspassung, S = Spielpassung, Ü = Übergangspassung)

Pala	,	Позора	ooung, o	- Орісірі		ungspassung)	Nennmaß	über bis	mm		
Bohrungen	Passungs- art*)	1 3	3 6	6 10	10 14 14 18	18 24 24 30	30 40 40 50	50 65 65 80	80 100 100 120	120 140 160 140 160 180	180 200 225 200 225 250
Boh	rung 15	+ 6	+ 8	+ 9	+ 11	+ 13 0	+ 16 0	+ 19	+ 22	+ 25 0	+ 29
р5	IJ	+10	+17	+21	+26	+31	+37	+45 +32	+52 +37	+61	+70 +70
n5		+ 6	+12 +13	+15 +16	+18 +20	+22 +24	+26 +28 +17	+32 +33 +20	+37 +38 +23	+43 +45 +27	+50 +51 +31
k6		+ 4 + 6 0	+18	+10 +10	+12	+15 +15 + 2	+17 +18 + 2	+20 +21 + 2	+25 +25 + 3	+28 +3	+31 +33 +4
j6		+ 4	-1 +6 -2	+ 1 + 7 - 2	+ 1 + 8 - 3	+ 9 - 4	+11 -5	+12 -7	+13 -9	+3 +14 - 11	+16 -13
h5		0 -4	0 - 5	0 -6	0 -8	0 -9	0 -11	0 -13	0 -15	0 -18	0 -20
Boh	rung 16	+10	+12	+15	+18	+21	+25	+30	+35	+40 0	+46 0
s6	P	+20 +14	+27 +19	+32 +23	+39 +28	+48 +35	+59 +43	+72 +78 +35 +59	+93 +101 +71 +79	+117 +125 +133 +92 +100 +108	+151 +159 +169 +122 +130 +140
r6	Р	+16 +10	+23 +15	+28 +19	+34 +23	+41 +28	+50 +34	+60 +62 +41 +43	+73 +76 +51 +54	+88 +90 +93 +63 +65 +68	+106 +109 +113 +77 +80 +84
n6	Ü	+10 +4	+16 + 8	+19 +10	+23 +12	+28 +15	+33 +17	+39 +20	+45 +23	+52 +27	+60 +31
m6		+ 8 + 2	+12 + 4	+15 + 6	+18 + 7	+21 + 8	+25 + 9	+30 +11	+35 +13	+40 +15	+46 +17
k6	Ü	+6	+ 9	+10 + 1	+12 + 1	+15 + 2	+18 + 2	+21 + 2	+25 + 3	+28 + 3	+33 + 4
j6	Ü	+ 4	+ 6	+ 7 - 2	+ 8 - 3	+ 9 - 4	+11 -5	+12 -7	+13 - 9	+14 -11	+16 -13
h6	S	0 - 6	0 -8	0 - 9	0 -11	0 -13	0 -16	0 -19	0 -22	0 -25	0 -29
g6	S	- 2 - 8	- 4 -12	- 5 -14	- 6 -17	- 7 -20	- 9 -25	-10 -29	-12 -34	-14 -39	–15 –44
f7	S	- 6 -16	-10 -22	-13 -28	-16 -34	-20 -41	-25 -50	-30 -60	-36 -71	-43 -83	-50 -96
Boh	rung 19	+14 0	+18	+22	+27 0	+33 0	+39 0	+46 0	+54 0	+63 0	+72 0
x 8	Р	+34 +20	+46 +28	+56 +34	+67 +72 +40 +45	+87 +97 +54 +64	+119 +136 +80 +97	+168 +192 +122 +146	+232 +264 +178 +210	+311 +343 +373 +248 +280 +310	+422 +457 +497 +350 +385 +425
u8	Р	_	_	-		- +81 - +48	+99 +109 +60 +70	+133 +148 +87 +102	+178 +198 +124 +144	+233 +253 +273 +170 +190 +210	+308 +330 +356 +236 +258 +284
h9	S	0 -25	0 -30	0 -36	0 -43	0 -52	0 -62	0 -74	0 -87	0 –100	0 –115
f7	S	- 6 -16	-10 -22	-13 -28	-16 -34	-20 -41	-25 -50	-30 -60	-36 -71	-43 -83	-50 -96
d9	S	-20 -45	-30 -60	-40 -76	-50 -93	–65 –117	-80 -142	-100 -174	-120 -207	–145 –245	–170 <i>–</i> 285
Boh	rung 11	+60 0	+75 0	+90 0	+110 0	+130 0	+160 0	+190 0	+220 0	+250 0	+290 0
h9	S	0 -25	0 -30	0 -36	0 -43	0 -52	0 -62	0 -74	0 -87	0 – 100	0 -115
h11	S	0 -60	0 -75	0 -90	0 –110	0 -130	0 –160	0 -190	0 -220	0 -250	0 – 290
d9	S	-20 -45	-30 -60	-40 -76	-50 -93	-65 -117	-80 -142	–100 –174	-120 -207	–145 –245	–170 –285
d9	S	-60 -120	-70 -145	-80 -170	-95 -205	–110 –240	-120 -130 -280 -290	-140 -150 -330 -340	-170 -180 -390 -400	-200 -210 -230 -450 -460 -480	-245 -260 -280 -530 -550 -570
c11	S	-270 -330	-270 -345	-280 -370	-290 -400	-300 -430	-310 -320 -470 -480	-340 -360 -530 -550	-380 -410 -600 -630	-460 -520 -580 -710 -770 -830	-660 -740 -870 -950 -1030 -1110

TI.7

(Auszug aus DIN 7160) Nennmaße in μ (= 0,001 mm)

					N	lennmaß üb	er bis m ı	m			
	Wellen	1 3	3 6	6 10	10 18	18 30	30 50	50 80	80 120	120 180	180 250
	d 11	- 20 - 80	- 30 -105	- 40 -130	- 50 -160	- 65 -195	- 80 -240	-100 -290	-120 -340	–145 –395	–170 –460
	e 8	- 14 - 28	- 20 - 38	- 25 - 47	- 32 - 59	- 40 - 73	- 50 - 89	- 60 -106	- 72 -126	- 85 -148	-100 -172
	f9	- 6 - 31	- 10 - 40	- 13 - 49	- 16 - 59	- 20 - 72	- 25 - 87	- 30 -104	- 36 -123	- 43 -143	- 50 -165
	h 7	0 - 10	0 - 12	0 - 15	0 - 18	0 - 21	0 - 25	0 - 30	0 - 35	0 - 40	0 - 46
mm	h 8	0 - 14	0 - 18	0 - 22	0 - 27	0 - 33	0 - 39	0 - 46	0 - 54	0 - 63	0 - 72
bis	h 10	0 - 40	0 - 48	0 - 58	0 - 70	0 - 84	0 –100	0 –120	0 –140	0 -160	0 –185
über I	h 12	0 –100	0 -120	0 -150	0 –180	0 –210	0 –250	0 -300	0 -350	0 -400	0 -460
	js 11	+ 30 - 30	+ 38 - 37	+ 45 - 45	+ 55 - 55	+ 65 - 65	+ 80 - 80	+ 95 - 95	+110 -110	+125 –125	+145 –145
Nennmaß	js 14	+125 -125	+150 -150	+180 -180	+215 -215	+260 -260	+310 -310	+370 -370	+435 -435	+500 -500	+575 -575
Nen	js 16	+300 -300	+375 -375	+450 -450	+550 -550	+650 -650	+800 -800	+950 -950	+1100 -1100	+1250 -1250	+1450 -1450
	k 10	+ 40 0	+ 48 0	+ 58 0	+ 70 0	+ 84 0	+100 0	+120 0	+140 0	+160 0	+185 0
	k 11	+ 60 0	+ 75 0	+ 90 0	+110 0	+130 0	+160 0	+190 0	+220 0	+250 0	+290 0
	k 12	+ 90 0	+120 0	+150 0	+180 0	+210 0	+250 0	+300 0	+350 0	+400 0	+460 0
	k 16	+600 0	+750 0	+900 0	+1100 0	+1300 0	+1600 0	+1900 0	+2200 0	+2500 0	+2900 0

Richtwerte für Oberflächengüten

Rautiefenbereich	Rt-Angabe	entspricht	ISO-Rauheits-	ISO	Ecke	enradius r (mm) ur	nd Vorschub f (mn	1)
Rz µm	μm	Ra-Wert	klasse	1302	r = 0,4	r = 0,8	r = 1,2	r = 1,6
63-100	Rt 100	12,5 - 25	N 11	25,0	-	0,51	0,69	0,88
40- 63	Rt 63	6,3 - 25	N 10	12,5	0,27	0,43	0,56	0,68
31,5- 40	Rt 40	4,9 - 6,3	N 9	6,3	0,25	0,37	0,49	0,57
25- 31,5	Rt 31,5	4,0 - 4,9	N 9	6,3	0,22	0,32	0,41	0,47
16- 25	Rt 25	2,5 - 4,0	N 8	3,2	0,20	0,28	0,36	0,39
10- 16	Rt 16	1,6 - 2,5	N 8	3,2	0,15	0,22	0,29	0,31
6,3- 10	Rt 10	1,0 - 1,6	N 7	1,6	0,10	0,13	0,18	0,20

Berechnungsformel (theoretischer Wert):

$$Rt = \frac{f}{8 x r} x 1000 \ (\mu m)$$

Vorschubberechnung:

$$f = \sqrt{\frac{Rt \times 8 \times r}{1000}} (mm)$$

 R_t = Oberflächenbeschaffenheit (μ m)

f = Vorschub (mm/U)

r = Eckenradius (mm)

Die wichtigsten Vorsatzzeichen und ihre Anwendung

Mega	M	1 000 000 = 10 ⁶	1 MW	=	1 000 000 W
Kilo	k	1 000 = 10 ³	1 kW	=	1 000 W
Hekto	h	100 = 10 ²	1 hl	=	100 I
Deka	da	10	1 daN	=	10 N
Dezi	d 0,1	= 10-1	1 dm	=	0,1 m
Zenti	c 0,01	= 10-2	1 cm	=	0,01 m
Milli	m 0,001	= 10 ⁻³	1 mm	=	0,001 m
Mikro	μ 0,000001	= 10-6	1 µm	=	0,000001 m

Bisherige Namen und Einheitszeichen, die beibehalten werden

Größe	Namen	Zeichen	Beziehu	ngen zur SI-Einheit
Volumen	Liter	I	11	$= 1 \text{ dm}^3 = 0,001 \text{ m}^3$
Masse Druck	Tonne Bar	t bar	1 t 1 bar	= 1 Mg = 1000 kg = 10 ⁵ Pa
Fläche Winkel	Ar Grad	a °	1 a 1°	= 10 ² m ² = 17,45 mrad
	Minute Sekunde	,	1°/60 1'/60	= 0,291 mrad = 4.85 rad
Zeit	Minute	min	1 min	= 60 s
Geschwindig- keit	Stunde	h km/h	1 h 1 km/h 1 m/s	= 3600 s = 1/3,6 m/s = 3,6 km/h

Durch das SI-System kann eindeutig zwischen Kraft einerseits und Masse (Gewicht) anderseits unterschieden und die Verwirrung zwischen den Begriffen kp und kg ausgeräumt werden.

Die Einheit der Kraft ist das Newton (N)

Die Einheit der Masse (Gewicht) ist das Kilogramm (kg)

Der Unterschied wird durch die Fallbeschleunigung von

9,81 m/s² hervorgerufen.

Die wichtigsten Umrechnungen zwischen den bisherigen und den neuen SI-Einheiten

SI-Einheiten zur bisherigen Einheit:

1 N	=	0,102 kp
1 Nm	=	0,102 kpm (= 1 Joule
1 W	=	0,102 kpm/s (= 1 J/s)
1 kW	=	1,36 PS
1 KW	=	860 kcal/h
1 J	=	0,102 kpm
1 J	=	0,239 cal
1 Pa	= (1 N/m ²) =	0,102 kp/m ²
K	=	°C + 273.15

Bisherige Einheit zur SI-Einheit:

1 кр	=	9,81 N
1 kpm	=	9,81 Nm
1 kpm/s	=	9,81 W
1 PS	=	0,736 kW
1 kcal/h	=	1,16.10 ⁻³ kW = 0,0

00116 kW

9,81 J 4,19 J 1 cal 9,81 Pa = 9,81 N/m²

Aus den Tabellen ist zu ersehen, dass 1 kp = 9,81 N bzw. 1 N = 0,102 kp ist.

Mit einer Fehlerquote von nur 2 Prozent liegen kp und \overline{N} um den Faktor 10 auseinander.

In der Praxis rechnet man daher mit folgenden Werten:

1 kp = 10 N 1 N 0,1 kp

*) SI-System International d'Unites = Internationale Maßeinheiten

Die wichtigsten SI-Einheiten*

Größe	Name	Zeichen
Länge	Meter	m
Masse	Kilogramm	kg
Zeit	Sekunde	S
Elektr. Stromstärke	Ampere	Α
Kraft	Newton	N
Drehmoment	Newtonmeter	Nm
Leistung	Watt	W
Energie (Arbeit)	Joule	J
Druck	Pascal	Pa
Temperatur**	Kelvin	K

Energie/Arbeit (Joule)

Die Energieeinheit hat 3 zahlengleiche Bezeichnungen:

1. Das Newtonmeter	Nm	(Mechanische Energieform
2. Die Wattsekunde	Ws	(Elektrische Energieform)
3. Das Joule	J	(Kalorische Energieform

Durch die Wahl der Bezeichnungen kann zum Ausdruck gebracht werden, ob es sich um mechanische, elektrische oder kalorische Energieformen handelt:

1 J = 1 Nm = 1 Ws (in Bezug auf die absolute Größe)

Umrechnung mechanischer Spannungen

E	Einheit	N/mm²	PA	kp/mm²
•	1 N/mm²	1	106	0,102
•	1 PA	10-6	1	0,102 – 10-6
•	1 kp/mm²	9,81	9,81 – 106	1

Auch hier wird in der Praxis mit ausreichender Genauigkeit (2 Prozent Abweichung) wie folgt gerechnet:

1 N/mm ²	=	0,1 kp/mm ²
1 kp/mm ²	=	10 N/mm ²

Zum Beispiel:

- 1. Ein Träger wird belastet mit 10 kN
- 2. Der Träger wiegt 200 kg

Die Kelvin-Skala beginnt beim absoluten Nullpunkt

= - 273,15°C

TI.9

Folgende Tabelle soll den Zusammenhang °C und K deutlich machen:

	Kelvin	°C
Absoluter Nullpunkt	0 K	- 273,15°
Schmelzpunkt Eis	273,15 K	0 °C
Siedepunkt des Wasser	373,15 K	+ 100°C

In der Praxis wird z.B. die Angabe, das Wasser ist 20°C warm, beibehalten. Nur bei Temperaturdifferenzen muss diese in Kelvin K angegeben werden. Hier entspricht 1°C genau 1 K.

Zum Beispiel: Die Differenz zwischen der Temperatur am Fensterrahmen außen und am Fensterrahmen innen beträgt 15 K. Das Zeichen ° für Grad entfällt bei der Temperaturangabe in Kelvin.

^{**)} Die SI-Einheit für die Temperatur ist das Kelvin.

Die Schutzart gibt die Eignung von elektrischen Betriebsmitteln für unterschiedliche Umweltbedingungen an. Der Begriff Schutzart kennzeichnet den Schutz eines Gerätes, beziehungsweise des Geräteinneren gegen direktes Berühren sowie gegen das Eindringen von Fremdkörpern, wie Gegenständen, Staub oder Wasser. Die Widerstandsfähigkeit gegen Belastungen durch die herrschenden Umweltbedingungen wird dabei durch internationale Schutzklassen (IP = Inter-national Protection) definiert. Die Schutzklassen wiederum werden in IP-Normen (DIN EN 60529) angegeben, wobei eine zweistellige Zahl den Schutzgrad konkretisiert.

Dabei bezieht sich die

- erste Ziffer auf die Resistenz gegen Festkörper und Staub und die
- zweite Ziffer bezeichnet die Widerstandsfähigkeit gegen das Eindringen von Wasser.

Je höher die jeweiligen Zahlen, desto größer der Schutz.

Die einzelnen Definitionen finden sie in den beiden nebenstehenden Tabellen.

Schutzgrade gegen Berührungen und Fremdkörper (1. Ziffer)

Ziffern	Schutz gegen Fremdkörper
0	Kein Schutz
1	Große Fremdkörper, Durchmesser größer 50 mm
2	Mittelgroße Fremdkörper, Durchmesser größer 12,5 mm
3	Kleine Fremdkörper, Durchmesser größer 2,5 mm
4	Kornförmige Fremdkörper, Durchmesser größer 1 mm
5	Staubgeschütz, nicht vollständig jedoch in hohem Maß, Funktionsfähigkeit bleibt erhalten
6	Staubdicht

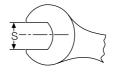
Beispiel:

IP 67

IP 6X Staubdicht
IP X7 geschützt gegen zeitweiliges
Untertauchen

Schutzgrade für Wasserschutz (2. Ziffer)

Ziffern	Schutz gegen Fremdkörper
0	Kein Schutz
1	Schutz gegen senkrecht fallende Tropfen
2	Schutz gegen schräg fallendes Tropfwasser
3	Schutz gegen Sprühwasser
4	Schutz gegen Spritzwasser
5	Schutz gegen Strahlwasserhalten
6	Schutz gegen starkes Strahlwasser
7	Schutz bei zeitweiligen Untertauchen, Tauchtiefe 1 m, Dauer 30 Minuten
8	Schutz bei dauerndem Untertauchen in Wasser. Die Bedingungen sind zwischen Hersteller und Anwender individuell zu ver- einbaren, müssen jedoch die Vorgaben von Ziffer 7 übertreffen.


Schlüsselweiten Schrauben und Muttern

	Standard		6-kaı	nt, klein	6-ka	nt, groß	Holzs	chrauben
DIN 601, 931 960, 7990	DIN 558 933, 961	DIN 609 610, 7968	DIN 561	DIN 564	E 143	EN 399-4		DIN 571
	d h	\bigoplus			Œ			
	Ш							
- +	``		Ψ	Щ		 		4
DIN 439, 555 934, 980, 982, 985	DIN 917, 1587, 986	DIN 979, 935			E 143	EN 399-4		
					40-	—		
					\square			
Gewinde	Schli	üsselweite	Gewinde	Schlüsselweite	Gewinde	Schlüsselweite	Ø	Schlüsselweite
M 1,6 M 2	Cilii		Gewinde	Ocinasserweite	Cewinde	Ocinusseiweite		Ocinusseiweite
M 2,5		3,2 4 5						
M 3 M4 M 5		5,5 7 8					4 5	7 8
M 6 M 8		10 13 (16)*	M 6 M 8	8 10 13			6 8	10 13 17 (16)*
M 10 M 12	17	(16)* (18)*	M 10 M 12	13 17	M 12	22	10 12	17 (16)* 19 (18)*
M 14 M 16		(18)* (21)* 24	M 16	19	M 16	27	16	24
M 18 M 20 M 22		27 30 (34)*	M 20	24	M 20 M 22	32 36	20	30
M 24 M 27		36 41	M 24	30	M 24 M 27	41 46 50		
M 30 M 33 M 36		46 50 55 60	M 30	36 46	M 30	60		
M 39 M 42			M 42	55	IVI 30	00		
M 45 M 48		65 70 75	M 42	55 65				
M 52		80						

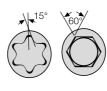
^{*} nach neuer ISO

Schlüsselweiten-Toleranzen

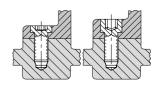
Auszug aus DIN 475 Teil 2

Schlüsselweiten (SW)		
Nennmaß	s min.	max.
3,2* 3,5 4* 4,5 5.5* 6* 7* 8* 9*	3,22 3,52 4,02 4,52 5,02 5,52 6,03 7,03 8,03 9,03	3,28 3,60 4,12 4,62 5,12 5,62 6,15 7,15 8,15 9,15
10* 11* 12* 13* 14* 15* 16*	10,04 11,04 12,04 13,04 14,05 15,05 16,05	10,19 11,19 12,24 13,24 14,27 15,27 16,27

Nennmaß s min. max. 17* 17.05 17.30	Schlüsselweiten (SW)		
17* 17 05 17 30	Nennmaß		max.
18* 18,05 18,30 19* 19,06 19,36 20* 20,06 20,36 21* 21,06 21,36 22* 22,06 22,36 23* 23,06 23,36 24* 24,06 24,36 25* 25,06 25,36 26* 26,08 26,48 27* 27,08 27,48 28* 28,08 30,8 30,48 30* 30,08 30,48 32* 32,08 32,48 34* 34,10 34,60 36* 36,10 36,60 41* 41,10 41,60	19* 20* 21* 22* 23* 24* 25* 26* 27* 28* 30* 32* 34* 36*	19,06 20,06 21,06 22,06 23,06 24,06 25,06 26,08 27,08 28,08 30,08 32,08 34,10 36,10	19,36 20,36 21,36 22,36 23,36 24,36 25,36 26,48 27,48 28,48 30,48 32,48 34,60 36,60


TI.11

Nennmaß	s min.	max.
46* 50* 55* 60* 65* 70* 75* 80* 85* 90* 95* 100* 105* 110* 115* 120*	46,10 50,10 55,12 60,12 65,12 70,12 75,15 80,15 80,15 85,15 90,15 90,15 100,15 100,15 100,20 115,20 120,20	46,60 50,60 55,72 60,72 65,72 70,72 75,85 80,85 80,85 90,85 90,85 100,85 106,00 111,00 116,00 121,00


^{*} Schlüsselweiten entsprechen internationalen Normen Schlüsselweiten 6,9,12,14,17,19,20,22,23,25,26,28 und 32 sind in dem ISO/DIS 691 eingeklammert und als Übergangswerte bezeichnet.

Die Verwendung von Torx®-Schrauben mit Torx®-Schraubwerkzeugen bietet dem Anwender wesentliche Vorteile:

2.+ 3.

- 1. Die Kraftübertragung über Flächen (statt punktuell) garantiert ein erhöhtes Drehmoment.
- 2. Das sechseckige Torx®-Profil mit abgerundeten Kanten verhindert Spannungspunkte im Schraubenkopf und beim
- 3. Durch optimale Passung werden Ausgleiten und Beschädigungen am Schraubenkopf gemindert und somit größere Standzeiten und längere Lebensdauer der Werkzeuge gewähr-
- 4. Ideale Einsatzbedingungen, auch bei engsten Raumverhältnissen, durch kleine Baumaße der Schrauben und Werkzeuge.

Maßtabelle Torx®

Schlüssel- maß	A mm	metrische Schrauben bis M 1,8
	,	his M 1 8
T 5 T 6 T 7 T 8 T 9	1,67 1,99 2,31 2,50	M 2 M 2 M 2,5 M 3
T 10 T 15 T 20 T 25 T 27	2,74 3,27 3,86 4,43 4,99	M 3 - M 3,5 M 3,5 - M 4 M 4 - M 5 M 4,5 - M 5 M 4,5 - M 5 - M 6
T 30 T 40 T 45 T 50 T 55 T 60	5,52 6,65 7,82 8,83 11,22 13,25	M 6 - M 7 M 7- M 8 M 8 - M 10 M 10 M 12 M 14

Torx®-Außenantrie	eb	
Schlüssel-	A	metrische
maß	mm	Schrauben
E 4	3,86	M 3
E 5	4,75	M 4
E 6	5,74	M 4, M 5
E 7	6,20	M 6
E 8	7,52	M 5, M 6
E 10	9,42	M 6, M 8
E 12	11,70	M 8, M 10
E 14	12,90	M 10, M 12
E 16	14,46	M 12
E 18	16,70	M 12, M 14
E 20	18,39	M 14, M 16

Schlüsselweiten

Schrauben mit Innensechskant

Schlüsselmaß — mm	0,7	0,9	1,3	1,5	2	2,5	3	4	5	6	7	8	10	12	14	17	19	22	24	27	32	36
DIN 912	-	-	M1,4	M1,6 M2	M2,5	M3	M4	M5	M6	M8	-	M10	M12	M14	M16 M18	M20 M22	M24 M27	M30	M33	M36	M42	M48
DIN 913 - 915	M1,4 M1,6 M1,8	M2	M2,5	M3	M4	M5	M6	M8	M10	M12 M14	-	M16	M18 M20	M22 M24	-	-	-	-	-	-	-	-
DIN 7991	-	-	-	-	М3	M4	M5	M6	M8	M10	-	M12 M16	M14 M20	M18 M24	M22	-	-	-	-	-	-	-

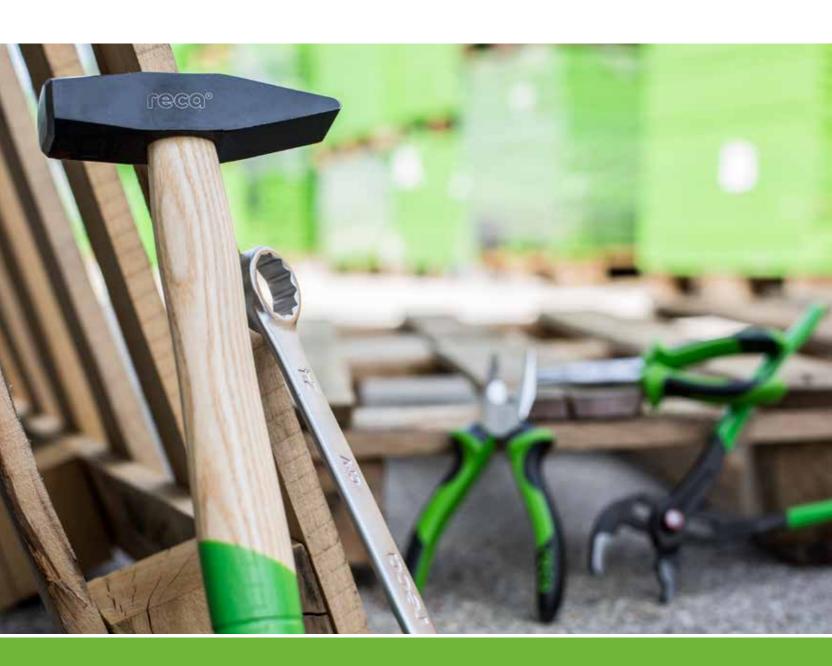
Größe	M 1,2	M 1,4	M 1,6	M 1,8	M 2	M 2,5	M 3	M 3,5	M 4	M 5	M 6	M 8	M 10	
DIN 84 (ISO 1207) b)	2,3 0,3	2,6 0,3	3 0,4	3,4 0,4	3,8 0,5	4,5 0,6	5,5 0,8	6 1,0	7 1,2	8,5 1,2	10 1,6	13 2	16 2,5	
Scheide Schraubendreher	2 x	0,3	2,5	¢ 0,4	3 x 0,5 (3,5 x 0,5)	3,5 x 0,6 (4 x 0,6)	4 x 0,8 (5,5 x 0,8)	5,5 x 1	6,5 x 1,2 (8 x 1,2)	8 x 1,2	10 x 1,6	12 x 2	14 x 2,	
Größe	M 1,2	M 1,4	M 1,6	M 1,8	M 2	M 2,5	M 3	M 3,5	M 4	M 5	M 6	M 8	M 10	
DIN 85 (ISO 1580) (ISO 1580) b)	-	-	-	-	-	-	6 0,8	7 1,0	8 1,2	10 1,2	12 1,6	16 2	20 2,5	
Scheide Schraubendreher	-	-	-	-	-	-	4 x 0,8 (5,5 x 0,8)	5,5 x 1 (6,5 x 1)	8 x	1,2	10 x 1,6	12 x 2	14 x 2,	
Größe	M 1,2	M 1,4	M 1,6	M 1,8	M 2	M 2,5	M 3	M 3,5	M 4	M 5	M 6	M 8	M 10	
DIN 963 DIN 964	2,3 0,3	2,6 0,3	3 0,4	3,4 0,4	3,8 0,5	4,7 0,6	5,6 0,8	6,5 1,0	7,5 1,2	9,2 1,2	11 1,6	14,5 2	18 2,5	
Scheide Schraubendreher	2 x	0,3	2,5	x 0,4	3 x 0,5 (3,5 x 0,5)	3,5 x 0,6 (4 x 0,6)	4 x 0,8 (5,5 x 0,8)	5,5 x 1 (8 x 1,2)	6,5 x 1,2	8 x 1,2	10 x 1,6	12 x 2	14 x 2,	
2. Blechschrauben														
Größe Ømm	2,2		2,9		3,5	3,9		4,2	4,8	В	5,5		6,3	
DIN 7971 b)	4,2 0,6		5,6 0,8		6,9	7,5 1		8,2 1,2	9,5 1,2		10,8 1,6		12,5 1,6	
Scheide Schraubendreher	3,5 x 0 (4 x 0,	, -	4 x 0,8 (5,5 x 0,8)		5,5 x ′ (6,5 x 1			8	x 1,2		10 x 1,6			
Größe Ømm	2,2		2,9		3,5	3,9		4,2	4,8	В	5,5		6,3	
DIN 7972 ** b) a)	4,3 0,5		5,5 0,8		6,8	7,5 1		8,1 1,2	9,5 1,2		10,8 1,6		12,4 1,6	
Scheide Schraubendreher	3 x 0, (3,5x 0		4 x 0,8 (5,5 x 0,8)		5,5 x 1 (6,5 x 1			- , -	5 x 1,2 x 1,2)		10 x 1,6			
Größe Ømm	2,2		2,9		3,5	3,9		4,2	4,8	8	5,5		6,3	
DIN 7973 b)	4,3 0,5		5,5 0,8		6,8	7,5 1		8,1 1,2	9,5 1,2		10,8 1,6		12,4 1,6	
Scheide Schraubendreher	3 x 0, (3,5x 0		4 x 0,8 (5,5 x 0,8)		5,5 x ′ (6,5 x 1			6,5 x 1,2 (8 x 1,2)	8 x ′	1,2		10 x 1,6		
3. Gewindestifte														
Größe	M 2,5	М 3	M 3,5	M 4	M 5	M 6	M 8	M 10	M 12	M 14	M 16	M 18	M 20	
DIN 417, 427 (ISO 4766,7435) a)	2,5 0,4	3 0,4	3,5 0,5	4 0,8	5 0,8	6 1,2	8 1,6	10 1,6	12 1,6	14 2	16 2,5	18 2,5	20 2,5	
Scheide Schraubendreher	2 x	0,4	2,5 x 0,4	3 x 0,5	4 x	0,8	6,5 x 1,2	8 ×	1,6	10 x 1,6	12 x 2	14	x 2,5	

Schraubenkreuzschlitze/Schraubendreherklingen nach DIN/ISO

1. Gewindeschrauben											
Größe	M 1,6	M 1,8	M 2	M 2,5	M 3	M 3,5	M 4	M 5	M 6	M 8	M 10
DIN 7985 ISO	0			1 Größer	nbezeichnun	g der Kreuzs	2 schlitze		3	4	
DIN 965 (ISO 7987) DIN 966 (ISO 7988)		0		1 Größer	nbezeichnun	g der Kreuzs	2 schlitze		3	4	
2. Blechschrauben											
Größe Ø mm	2,2		2,9	3,5	3,9		4,2	4,8	5	,5	6,3
DIN 7981 DIN 7982 DIN 7983		1		Größer	bezeichnun	2 g der Kreuzs	chlitze		3	3	
3. Holzschrauben											
Größe	2	2,5	3	3,5	4	4,5	5	5,5	6	7	8
DIN 7996 DIN 7997 DIN 7995 ISO	0	1		Größer	2 nbezeichnun	g der Kreuzs	schlitze		3		4

Vickershärte	Brinellhärte	Rockwe	llhärte²)	Zugfestigkeit	l	Vickershärte	Brinellhärte	Rockwe	ellhärte ²⁾	Zugfestigkeit		
HV 30	HB 30	HRB	HRC	$\sigma_{R_{m}}$		HV 30	HB 30	HRB	HRC	$\sigma_{R_{m}}$		
				N/mm²						N/mm²		
80	80	36,4	-	270		350	350	-	36,0	1170		
85	85	42,4	-	290		360	359	-	37,0	1200		
90	90	47,5	-	310		370	368	-	38,0	1230		
95	95	52,0	-	320		380	376	-	38,9	1260		
100	100	56,4	-	340		390	385	-	39,8	1290		
105	105	60,0	-	360		400	392	-	40,7	1320		
110	110	63,4	-	380		410	400	-	41,5	1350		
115	115	66,4	-	390		420	408	-	42,4	1380		
120	120	69,4	-	410		430	415	-	43,2	1410		
125	125	72,0	-	420		440	423	-	44,0	1430		
130	130	74,4	-	440		450	430	-	44,8	1460		
135	135	76,4	-	460		460	-	-	45,6	-		
140	140	78,4	-	470		470	-	-	46,3	-		
145	145	80,4	-	490		480	-	-	47,0	-		
150	150	82,2	-	500		490	-	-	47,7	-		
155	155	83,8	-	520		500	-	-	48,3	-		
160	160	85,4	-	540		510	-	-	49,1	-		
165	165	86,8	-	550		520	-	-	49,7	-		
170	170	88,2	-	570		530	-	-	50,4	-		
175	175	89,6	-	590		540	-	-	51,0	-		
180	180	90,8	-	600		550	-	-	51,6	-		
185	185	91,8	-	620		560	-	-	52,2	-		
190	190	93,0	-	640		570	-	-	52,8	-		
195	195	94,0	-	660		580	-	-	53,3	-		
200	200	95,0	-	670		590	-	-	53,9	-		
205	205	95,8	-	680		600	-	-	54,4	-		
210	210	96,6	-	710		610	-	-	55,0	-		
215	215	97,6	-	720		620	-	-	55,5			
220	220	98,2	-	730		-						
225	225	99,0	-	750		630	-	-	56,0	-		
230	230	-	19,2	760		640	-	-	56,5	-		
235	235	-	20,2	780		650	-	-	57,0	-		
240	240	-	21,2	800		660	-	-	57,5	-		
245	245	-	22,1	820		670	-	-	58,0	-		
250	250	-	23,0	830		680	-	-	58,5	-		
255	255	-	23,8	850		690	-	-	59,0	-		
260	260	-	24,6	870		700	-	-	59,5	-		
265	265	-	25,4	880		720	-		60,4	-		
270	270	-	26,2	900		740	-		61,2	-		
275	275	-	26,9	920		760	-	-	62,0	-		
280	280	-	27,6	940		780	-	-	62,8	-		
285	285	-	28,3	950		800	-	-	63,6	-		
290	290	-	29,0	970		820	-	-	64,3	-		
295	295	-	29,6	990		840	-	-	65,0	-		
300	300	-	30,3	1010		860	-	-	65,7	-		
310	310	-	31,5	1040		880	-	-	66,3	-		
320	320	-	32,7	1080		900	-	-	66,9	-		
330	330	-	33,8	1110		920	-	-	67,5	-		
340	340	-	34,9	1140		940	-	-	68,0	-		

¹⁾ Alle mittels verschiedener Härteprüfverfahren an verschiedenen Werkstoffen ermittelten Härtewerte sind nur annähernd vergleichbar.


²⁾ Die auf eine Dezimale angegebenen Rockwellwerte dienen nur der Interpolation und sind im Endergebnis auf ganzen Zahlen zu runden.

		Metr	ische I	Maße								Ame	erikanisch	ne Ma	aße						Br	itisch	e Maße	e
S	chlüsselwe	eiten		metriso	Ø-Gev			2272	Schlü	isselweite	n	ISO R 2	72 1962	Uni		winde	Americ	an Sta	ndard		Ø-Gew	inde		üssel- eiten
					ch DIN		19					1001112	12 1002		ndard			8.2 19	72	Screws			WC	itori
Nennmaß	Kleinstmaß-mm nach DIN 475/2,	Größtmaß-mm nach DIN 475/2, Reihe 1	Größtmaß-mm nach DIN 475/2, Reihe 2	normaler Sechskant	kleiner Sechskant	großer Sechskant	normaler Sechskant	Kleiner Sechskant	Nennmaß	dezimal-Zoll	dezimal-metrisch	Bolts	Nuts	normal series BS 1768	heavy series BS 1769	finished thick series	regular square series	heavy series	finished and regular political bolt series, hex. head cap screws	avy	Nennmaß	BS 916, BS 1083	dezimal-Zoll	dezimal-metrisch
3 3,2 3,5	3,02 3,22 3,52	3,08 3,28 3,60		1,2 1,4 1,6 1,7			1,6		1/8	.1250	3,18	No.2									10 BA 9 BA		.117 .131	2,97 3,33
4 4,5 5	4,02 4,52 5,02	4,12 4,62 5,12		2 2,3 2,5 2,6			2 2,5		5/32 3/16 13/64	.1563 .1875 .2031	3,97 4,76 5,16	No. 3, 4, 5	No. 0, 1 No. 2, 3								8 BA 7 BA 6 BA		.152 .172 .193	3,86 4,37 4,90
5,5 6	5,52 6,03	5,62 6,15		3 3,5			3		7/32 15/64 1/4	.2188 .2344 .2500	5,56 5,95 6,35	No. 6, 8	No. 4								5 BA 4 BA 1/16	3/32	.220 .248 .256	5,59 6,30 6,50
7	7,03 8,03	7,15 8,15	8,18	4 5	6		4 5		17/64 9/32 5/16	.2656 .2813 .3125	6,75 7,14 7,94	No. 10, 12	No. 5, 6						No.10		3 BA 3/32 2 BA	1/8	.282 .297 .324	7,16 7,54 8,23
9	9,03	9,15	9,18						11/32 3/8 13/32	.3438 .3750 .4062	8,73 9,52 10,32	110. 10, 12	No. 8 No. 10								1/8 1 BA	3/16	.340 .365	8,64 9,27
10	10,04 11,04	10,19	10,24	6 7	8		6 7		7/16	.4375	11,11	1/4	No. 12 1/4	1/4		1/4	1/4	1/.	1/4		0 BA 3/16	1/4	.413 .445	10,49 11,30
12 13 14	12,04 13,04 14,05	12,24 13,24 14,27	12,30 13,30 14,35	8	10		8	10	1/2 17/32 9/16	.5000 .5313 .5625	12,70 13,49 14,29	⁵ / ₁₆	5/16 3/8	5/16 3/8		5/16 3/8	5/16	1/ ₄	5/ ₁₆		1/4	5/16	.525	13,33
15 16 17	15,05 16,05 17,05	15,27 16,27 17,30	15,35 16,35 17,40	10 (Kfz) 10	12		10	12	19/32 5/8 21/32	.5938 .6250	15,08 15,87 16,67	7/16		7/16			3/8		7/16		5/16	3/8	.600	15,24
18 19	18,05 19,06	18,30 19,36	18,40 19,46	12	16		12		21/32 11/16 3/4 25/32	.6563 .6875 .7500	16,67 17,46 19,05	1/2	7/ ₁₆ 1/ ₂	1/2		7/ ₁₆ 1/ ₂	7/16	3/8 7/16	1/2		3/8	7/16	.710	18,03
20 20,8 21	20,06 20,86 21,06	20,36 21,16 21,36	20,46 21,26 21,46						13/16 7/8	.7813 .8125 .8750	21,26 22,22	9/16	9/16	9/16	1/2	9/16	1/2 9/16	1/2	9/16	1/2	7/16	1/2	.820	20,83
22 23 24	22,06 23,06 24,06	22,36 23,36 24,36	22,46 23,46 24,46	14 16	20	12	14 16	16 18	15/16 31/32 1	.9375 .9688 1.0000	23,81 24,61 25,40	5/8	5/8	5/8		5/8	5/8	9/16	5/8		1/2	9/16	.920	23,37
25 26 27	25,06 26,08 27,08	25,36 26,48 27,48	25,46 26,58 27,58	18		16	18	20	1.1/16	1.0625	26,99				5/8			5/8		5/8	9/16 5/8	5/8 11/ ₁₆	1.010 1.100	25,65 27,94
28 29 30	28,08 29,08 30,08	28,48 29,48 30,48	28,58 29,58 30,58	20	24		20	22	1.1/8 1.3/16 1.1/4	1.1250 1.1875 1.2500	28,57 30,16 31,75	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	11/16	3/4	1.200	30,48
32 33 36	32,08 33,08 36,10	32,48 33,48 36,60	32,58 33,58 36,70	22 24	30	20	22 24	24 27	1.5/16 1.3/8 1.7/16	1.3125 1.3750 1.4375	33,34 34,92 36,51	7/8	7/8	7/8	7/8	7/8	7/8	7/8	7/8	7/8	3/4 13/16	7/ ₈ 15/ ₁₆	1.300 1.390	33,02 35,31
38 41 42	38,10 41,10 42,10	38,60 41,60 42,60	38,70 41,70 42,70	27		24	27	30	1.1/2 1.5/8 1.11/16	1.5000 1.6250 1.6875	38,10 41,28 42,86	1 1 ¹ /8	1 1 ¹ /8	1 1 ¹ /8	1	1 1 ¹ /8	1 1 ¹ /8	1	1 1 ¹ / ₈	1	7/8 1	1 1¹/8	1.480 1.670	37,59 42,42
46	46,10	46,60	46,70	30	36	27	30	33	1.3/4 1.13/16 1.7/8	1.7500 1.8125 1.8750	44,45 46,04 47,62	11/4	11/4	11/4	11/8	11/4	11/4	11/8	11/4	11/8	1.1/8			
50 54	50,10 54,10	50,60 54,60	50,70 54,70	33			33	36	2 2.1/16	2.0000 2.0625	50,80 52,39	13/8	13/8	13/8	11/4	13/8	13/8	11/4	13/8	11/4	1.1/4	1 ¹ / ₄	1.860 2.050	47,24 52,07
55 58 60	55,12 58,12 60,12	55,72 58,72 60,72	55,92 58,92 60,92	36	42		36	39	2.3/16 2.1/4 2.3/8	2.1875 2.2500 2.3750	55,56 57,15 60,32	11/2	11/2	11/2	1 ³ / ₈	11/2	11/2	1 ³ / ₈	11/2	1 ³ / ₈	1.3/8	11/2	2.220	56,39
63 65 67	63,12 65,12 67,12	63,72 65,72 67,72	63,92 65,92 67,92	42	48		42		2.7/16 2.9/16 2.5/8	2.4375 2.5625 2.6250	61,91 65,09 66,67	1 ³ / ₄	1 ³ / ₄	13/4		1 ⁵ / ₈	1 ⁵ / ₈	15/8	1 ⁵ / ₈	1 ⁵ /8	1.1/2 1.5/8	1 ⁵ / ₈ 1 ³ / ₄	2.410 2.580	61,21 65,53
70 71	70,12 71,12	70,72 71,72	70,92 71,92	45			45		2.3/4 2.13/16	2.7500	69,85	177	. ,-	1,4	13/4	17/8	17/8	13/4	17/8	13/4	1.3/4	2	2.760	70,10
75 77 80	75,15 77,15 80,15	75,85 77,85 80,85	76,15 78,15 81,15	48 52	56		48 52		2.15/16 3 3.1/8	3.0000 3.1250	76,20 79,37	2	2	2	2	2	2	17/8	2	17/8	2	21/4	3.150	80,01
85 90 95	85,15 90,15 95,15	85,85 90,85 95,85	86,15 91,15 96,15	56 60 64			56 60 64		3.3/8 3.1/2 3.3/4	3.3750 3.5000 3.7500	85,72 88,90 95,25					2 ¹ / ₄	2 ¹ / ₄	21/4	2 ¹ / ₄	21/4		21/2	3.550	90,17
100	100,15	100,85	101,15	68			68		3.7/8	3.8750								21/4		21/4		23/4	3.890	98,80
105 110 115	105,20 110,20 115,20	106,00 111,00 116,00	106,40 111,40 116,40	72 76 80			72 76 80		4.1/8 4.1/4 4.1/2	4.1250 4.2500 4.5000	104,77 107,95 114,30					2 ³ / ₄	2 ³ / ₄	23/4	2 ³ / ₄	23/4		3 3 ¹ / ₄	4.180 4.530	106,17 115,06
120 125	120,20 125,20	121,00 126,00	121,40 126,40	85			85		4.5/8 4.7/8 5	4.6250 4.8750	117,47 123,82 127,00							3 3 ¹ / ₄	31/4	3		31/2		123,19
130 135	130,20 135,20	131,00 136,00	131,40 136,40	90 95			90 95		5.1/4 5.3/8 5.5/8	5.2500 5.3750 5.6250	133,35 136,52							31/2 31/2 33/4	3 ¹ / ₂ 3 ³ / ₄			33/4	5.180	
140 145 150	140,20 145,20 150,25	141,00 146,00 151,25	141,40 146,40	100 105			100 105		5.3/4 6	5.7500 6.0000	146,05 152,40							3 ³ / ₄	4			41/-	5.550	
155 160 165	155,25 160,25 165,25	156,25 161,25 166,25		110			110		6.1/8	6.1250	155,57							4				41/2	6.380	162,05
170 175 180	170,25 175,25 180,25	171,25 176,25 181,25					120 125																	
185 190	185,25 190,25	186,25 191,25					130 135															5	7.300	185,42
195 200 210	195,25 200,25 210,25	196,25 201,25 211,25					140 150															51/2	8.350	212,09
220 230	220,30 230,30	221,50																				,,,		,50

Technische In

reca

